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Making Robust Decisions in Discrete Optimization
Problems as a Game against Nature

Adam Kasperski∗

Abstract In this paper a discrete optimization problem under uncertainty is discussed. Solving
such a problem can be seen as a game against nature. In order to choose a solution, the minmax
and minmax regret criteria can be applied. In this paper an extension of the known minmax (re-
gret) approach is proposed. It is shown how different types of uncertainty can be simultaneously
taken into account. Some exact and approximation algorithms for choosing a best solution are
constructed.
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1. Introduction

Decision making under uncertainty is an important area of research in economy. If one
tries to describe a given system, some parameters often appear whose values are not
precisely known. This uncertainty can be seen as a feature ofthe nature. In one of
the most popular approaches to hedging against such uncertainty, a set of all possible
realizations of the parameters is specified. Every particular realization is called asce-
nario and, in the simplest case, no probability distribution in the scenario set is given.
The decision making process can be seen as a zero-sum game against nature (Luce
and Raiffa 1957). To guarantee a certain payoff, we may wish to make a decision that
has the best performance under the worst scenario which may appear. This leads to
applying well known game theoretic criteria, namely the minmax and minmax regret
ones. Under the minmax criterion we choose a decision whose maximal cost over all
scenarios is minimal and under the minmax regret one we choose a decision whose
maximal regret (opportunity loss) over all scenarios is minimal. The minmax regret
criterion was first suggested by Savage (1951).

In a wide class of decision making problems we seek a cheapestobject composed
of some elements of a given finite set. This class is calleddiscrete optimization prob-
lems. Suppose that we explore a part of a communication network. We can model this
network as a graphG = (V,E), where a finite set of edgesE represents roads. Every
roade ∈ E has an associated costce, which may for instance express a traveling time
of e. A decision consists of choosing a best path between two points in the network.
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Under deterministic costs the cheapest path can be found my many known and effi-
cient algorithms (see e.g. Ahuja et al. 1993). The situation, however, is more complex
if precise values of the costs are not known. In this case we only have a scenario set
containing more than one cost realization which may occur. Since now the total cost
of a path is not known, we must use some additional criteria tomake a decision. We
may treat this problem as a game against nature, that is a specific player who always
tries to increase the cost of our decision. We may thus apply the minmax or minmax
regret criterion to choose a path.

The minmax (regret) approach to discrete optimization has attracted a consider-
able attention in recent decade. Many results in this area have been described in a
book by Kouvelis and Yu (1997). Since the 1997’s book a numberof papers devoted
to this approach have appeared (e.g. Aissi et al. 2005, 2007,Aron and van Henten-
ryck 2004, Averbakh 2001, Averbakh and Lebedev 2004, Conde 2004, Kasperski and
Zieliński 2006, Yaman et al. 2001). Some surveys of recent resultscan be found in a
paper by Aissi et al. (2008) and in a book by Kasperski (2008).In general, the prob-
lem with more than one possible cost realization turned out to be more complex to
solve than its deterministic counterpart. The exact methods of obtaining a solution are
based on a mixed integer programming formulation (Kouvelisand Yu 1997, Yaman
et al. 2001) or a branch and bound procedure (Kouvelis and Yu 1997, Montemanni et
al. 2004, 2005). There are also some approximation algorithms that can be used to
obtain an approximate solution in polynomial time (Aissi etal. 2007, Kasperski and
Zieliński 2006). In this paper we propose a new robust model, in which scenario set is
a union of a finite number of so calledinterval scenarios. We generalize in this way
the robust models discussed in literature. This new type of scenario set allows us to
take into account different kinds of uncertainty, which hasbeen treated separately in
literature so far. We also focus on some exact and approximation methods of solving
the constructed problems.

This paper is organized as follows. In Section 2 we briefly recall a very simple and
well known minmax (regret) decision making model. We introduce some notations,
which will be next extended to a problem with more complex structure. In Section 3
we generalize the minmax (regret) decision making model to the class of discrete op-
timization problems. We recall a known approach and we propose its extension based
on a set of interval scenarios. Section 4 is devoted to some methods of solving the
constructed problems. We design a mixed integer programming model, which can be
solved by a standard software and, for large problems, we propose an approximation
algorithm.

2. A simple minmax (regret) decision making model

In this section we recall a well known and very simple decision making model (see e.g.
Luce and Raiffa 1957). In the next sections we will show how the notions and concepts
introduced here can be naturally extended. We are given a finite set of elementsE =
{e1, . . . ,en}. A decision consists of choosing a single element from the setE. Let
c = [ce1, . . . ,cen ] be vector of nonnegative real numbers, wherece is a cost of element
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e ∈ E underc. We will use F(e,c) = ce and F̂(c) = mine∈E F(e,c) to denote the
cost ofe underc and the cost of a best decision underc respectively. The quantity
D(e,c) = F(e,c)− F̂(c) is called aregret of decisione underc and it expresses an
opportunity loss when decisione is chosen under costsc. In a deterministic case,
where there is only one cost vectorc, we simply choose a decision having the smallest
cost or, equivalently, whose regret equals 0.

Assume now that the cost vector is not known in advance. Instead of a single vector,
there is a finite setΓ = {c1, . . . ,ck} of cost vectors called ascenario set. Everyscenario
cj ∈ Γ may appear with positive but perhaps unknown probability. So, we know that
exactly one cost realization fromΓ will appear but it is not possible to predict which
one. The problem of choosing a decision can be seen as a zero-sum game against a
specific player called a nature. In this context, the scenario setΓ represents all possible
states (strategies) of the nature. In order to make a decision two criteria are widely
applied, namelyminmax and minmax regret ones. Under the minmax criterion we
chose a decision whose maximal cost over all scenarios is minimal, that is we solve
problem mine∈E maxc∈Γ F(e,c) and under the minmax regret criterion we choose a
decision whose maximal regret over all scenarios is minimal, that is we solve problem
mine∈E maxc∈Γ D(e,c). We will call the decisions obtained by solving both problems a
minmax andminmax regret decision respectively.

A deeper interpretation and a critical discussion on both criteria can be found in
books by Kouvelis and Yu (1997) and Luce and Raiffa (1957). Ingeneral, we should
apply the minmax criterion if we only wish to minimize the cost of our decision. On
the other hand, the minmax regret criterion is appropriate if we have a competitor
and we wish to minimize his superiority over us. In this case we may assume that
our competitor always chooses a best decision under every scenario and choosing a
minmax regret decision we minimize the maximal dominance ofthe competitor. This
may be more important that simply minimizing the maximal cost.

3. Minmax (regret) discrete optimization problem

We now show how the simple decision making problem describedin the previous sec-
tion can be extended. Suppose that, in addition toE, we are given another setΦ that
contains some subsets ofE, that isΦ ⊆ 2|E|. The setΦ is called a set offeasible
solutions and now decision consists of choosing a feasible solutionX ∈ Φ. Extend-
ing the notations from the previous section, we will useF(X ,c) = ∑e∈X F(e,c) to
denote the cost of solutionX underc and by F̂(c) = minX∈Φ F(X ,c) the cost of a
best (optimal) solution underc. We can express the regret of solutionX underc as
D(X ,c) = F(X ,c)− F̂(c). A triple (E, Φ, c) is called adeterministic discrete optimiza-
tion problem and our aim is to choose a best solution under the only cost realizationc.

Using different descriptions of the setΦ we get different problems. In an important
class ofnetwork problems, E is a set of edges of a given graphG = (V,E) andΦ con-
tains subsets of edges that form, for example, paths, spanning tress, perfect matchings,
cuts etc. inG. If E is a set of items, thenΦ may contain all subsets of items whose
cardinalities are preciselyp (the minimum selecting items problem). This problem can
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be generalized by introducing a positive capacitype for every iteme ∈ E andΦ con-
tains then all subsets of items whose total capacities do notexceed a given numberP.
This is well known 0-1 knapsack problem. A comprehensive review of various prob-
lems can be found for instance in books by Ahuja et al. (1993) and Papadimitriou and
Steiglitz (1998).

Suppose now that, similarly to the problem discussed in the previous section, we
are given a finite set of scenariosΓ = {c1, . . . ,ck} that represent some states of the
nature, that is some possible vectors of the element costs which may occur. In order
to choose a solution we can use exactly the same reasoning as in Section 2. The
only significant difference is that now decision set is givenby Φ. So, we may seek a
minmax solution minimizing the maximal cost or aminmax regret solution minimizing
the maximal regret over all scenarios fromΓ. These solutions can be obtained by
solving the following optimization problems:

M INMAX : min
X∈Φ

max
c∈Γ

F(X ,c),

M INMAX REGRET: min
X∈Φ

max
c∈Γ

D(X ,c).

Example 1. Consider a sample problem shown in Figure 1. In this problemE =
{e1, . . . ,e5} is a set of arcs of a given directed graphG = (V,E) andΦ contains all sub-
sets of the arcs that form paths between nodess andt in G. So,Φ = {{e1,e4},{e1,e3,
e5},{e2,e5}} contains three decisions (paths). We have two possible scenarios, so
Γ = {c1,c2} and the costs under both of them are shown in the table in Figure 1.

Figure 1. A sample shortest path problem with two deterministic scenarios

1

2

e1e1e1

e2

e3

e4e4e4

e5

s t

c1 c2

e1e1e1 1 4
e2 6 4
e3 1 6
e4e4e4 6 4
e5 3 2

It holdsF̂(c1) = 5 andF̂(c2) = 6. In other words, the shortest path underc1 has cost 5
and the shortest path underc2 has cost 6. Consider a sample pathX = {e1,e4}. This
path has the cost 7 under scenarioc1 and 8 underc2. It also has regret equal to 2
underc1 and 2 underc2. So, the maximal cost ofX under all scenarios is 7, while its
maximal regret over all scenarios is 2. It is easy to check that X is the best path under
both minmax and minmax regret criteria. It is, however, optimal neither underc1 nor
c2. It is a compromise solution that has the best performance inthe worst case.�
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There is one very significant difference between the discrete optimization problem
and the decision problem described in Section 2. The solution space (the cardinality
of Φ) in a discrete optimization problem is typically exponential in the number of ele-
ments inE. So, for real problems, we cannot find a best solution by simply exploring
the whole setΦ. Unfortunately, a general efficient algorithm for computing a minmax
(regret) solution probably does not exist because such problems as shortest path, mini-
mum spanning tree, minimum assignment, minimum cut and minimum selecting items
turned out to be NP-hard even for 2 scenarios (Aissi et al. 2005, Kouvelis and Yu 1997,
Yu and Yang 1998). In order to obtain a minmax (regret) solution we can use a mixed
integer programming formulation or a branch and bound algorithm described by Kou-
velis and Yu (1997). Also, Aissi et al. (2005) showed that under the assumption that
a deterministic problem is polynomially solvable, its minmax (regret) version is ap-
proximable efficiently within the number of scenariosk. However, some recent results
proven by Kasperski and Zieliński (2008) suggest that the minmax (regret) versions of
such basic problems as shortest path, minimum assignment and minimum cut are hard
to approximate within log1−ε k for anyε > 0. We thus can see that introducing more
than one scenario significantly increases the problem complexity.

3.1 An extension of the minmax (regret) approach

In practice, a problem with scenario setΓ, such as the one shown in Example 1, may
be still not appropriate. Suppose that the graph shown in Figure 1 models a part of a
communication network and the cost of arce ∈ E is a traveling time of this arc. Two
scenarios in this problem may correspond to two possible events such as traffic loads.
Of course, a traffic load has a global influence on the network since an obstacle in one
road influences some other roads. So, defining several different time scenarios is a
good way of modeling such a situation. Notice, however, thatasking about a traveling
time, even assuming that a particular event will happen, we rarely get a precise answer.
The traveling time is an example of a parameter whose nature is imprecise. In other
words, a traveling time of a road may vary independently on the values of the traveling
times of the remaining roads. Therefore, under every scenario it may be reasonable to
specify a range of possible traveling times instead of a single value. We now show how
such uncertainty can be taken into account in the approach described in the previous
section.

Suppose first that the element costs are given as closed intervals. Hence the inter-
val [ce,ce] contains all possible values of cost of elemente ∈ E. We assume that the
element cost may take any value from this interval independently on the values of the
costs of the remaining elements. Letc̃ be a Cartesian product of all these intervals,
namelyc̃ = ×e∈E [ce,ce]. Observe that̃c contains infinite number of possible cost re-
alizations. Assume now that scenario set is given asΓ̃ = c̃1∪ ·· ·∪ c̃k, wherec̃1, . . . , c̃k

are calledinterval scenarios. The scenario set̃Γ generalizes scenario setΓ and models
two types of uncertainty. Different interval scenarios correspond to astructural uncer-
tainty having a global influence on the considered system; the intervals within every
interval scenario model alocal uncertainty connected with the imprecise nature of a
single cost. We consider now the following natural generalizations of the MINMAX
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and MINMAX REGRETproblems:

M INMAX : min
X∈Φ

max
c∈Γ̃

F(X ,c),

M INMAX REGRET: min
X∈Φ

max
c∈Γ̃

D(X ,c).

Example 2.Consider a shortest path problem shown in Figure 2. We have two interval
scenarios̃c1 andc̃2 in the problem. Sõc1 = [1,3]× [5,6]×·· ·× [2,3] andc̃2 = [2,5]×
[3,5]×·· ·× [2,2]. We obtainΓ̃ = c̃1∪ c̃2. For a sample pathX = {e1,e4} the maximal
cost over allc∈ Γ̃ is 10 and the maximal regret is 5.�

Figure 2. A sample problem with two interval scenarios

1

2

e1

e2

e3

e4

e5

s t

c̃1 c̃2

e1 [1,3] [2,5]
e2 [5,6] [3,5]
e3 [1,1] [2,8]
e4 [3,6] [4,5]
e5 [2,3] [2,2]

Let us denote byc ∈ c̃ a cost realization in which all elementse ∈ E have costsce.
Obviously maxc∈c̃ F(X ,c) = F(X ,c) and

min
X∈Φ

max
c∈Γ̃

F(X ,c) = min
X∈Φ

max
c∈{c1,...,ck}

F(X ,c). (1)

Notice that (1) is a MINMAX problem with scenario setΓ = {c1, . . . ,ck}. We thus can
see that the problem with interval scenarios can be easily transformed to an equivalent
M INMAX one with deterministic scenarios. We can now use any known algorithm
for the MINMAX problem to solve (1). In particular, the MIP formulation andthe
known approximation algorithms can be directly applied. Let us denote bycX ∈ c̃
a cost realization in which all elementse ∈ X have costsce and all the remaining
elements have costsce. It is well known (see e.g. Kasperski and Zieliński 2006) that
maxc∈c̃ D(X ,c) = D(X ,cX ). In consequence

min
X∈Φ

max
c∈Γ̃

D(X ,c) = min
X∈Φ

max
c∈{c1

X ,...,ck
X}

D(X ,c). (2)

Contrary to (1), there is no easy transformation of (2) to theM INMAX REGRETprob-
lem with deterministic scenarios. It follows from the fact that, contrary to the MIN-
MAX problem, the scenario setΓ = {c1

X , . . . ,ck
X} in (2) depends on solutionX . The
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problem (2) is not trivial even if there is only one interval scenarioc̃. In this particular
case we get the following problem:

min
X∈Φ

D(X ,cX ) = min
X∈Φ
{F(X ,cX )− F̂(cX )}. (3)

The problem (3) is well known and widely discussed in literature (see e.g. Kasper-
ski (2008) for a survey). This is a minmax regret discrete optimization problem with
interval costs. In most cases it is NP-hard even if the deterministic problem is polyno-
mially solvable (Aissi et al. 2005, Aron and van Hentenryck 2004, Averbakh and Lebe-
dev 2004). However, for (3) an efficient 2-approximation algorithm is known (Kasper-
ski and Zielínski 2006). Note that in problem (3) only the local uncertainty is taken
into account.

4. Solving the minmax regret problem with a set of interval scenarios

In this section we will focus on solving the MINMAX REGRETproblem with scenario
set Γ̃. We will provide an exact algorithm based on a mixed integer programming
formulation and we propose a simple approximation algorithm, which is fast if only
the deterministic problem is polynomially solvable.

4.1 Mixed integer programming formulation

Let us assign binary variablexi ∈{0,1} to every elementei ∈E. This variable will indi-
cate whether elementei is contained in the constructed minmax regret solution. Every
solutionX ∈ Φ can be described by a characteristic vectorx = [x1, . . . ,xn] ∈ {0,1}n

wherexi = 1 if and only if ei ∈ X . We will assume that the set of all characteristic
vectors can be described by some set of linear constraints ofthe formA xT = b, where
A is a matrix andb is a vector of fixed coefficients. Of course, we also allow signs
≤ and≥ in some constraints since they can be transformed to equalities by adding a
number of additional slack variables. We will assume that matrix A is totally unimo-
dular. Recall that in a totally unimodular matrix all its nonsingular square submatrices
have determinants -1 or 1. This assumption restricts the class of considered problems.
However, the solutions of many important problems such as shortest path, minimum
spanning tree, minimum assignment or minimum cut can be described by a system
of linear constraints with a totally unimodular matrixA (see e.g. Ahuja et al. 1993,
Papadimitriou and Steiglitz 1998, Garfinkel and Nemhauser 1972).

To simplify notations, suppose that thej-th interval scenariõcj is Cartesian product
of intervals[c j

i ,c
j
i ] for all ei ∈ E. Using (2) we can rewrite the MINMAX REGRET

problem as follows:

minλ
F(X ,cj

X )− F̂(cj
X )≤ λ j = 1, . . . ,k

X ∈Φ
λ ≥ 0,

(4)
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whereF̂(cj
X ) = minY∈Φ F(Y,cj

X ). We fix X and consider subproblem minY∈Φ F(Y,cj
X ).

Using binary variables representingX andY and the definition of the cost realization
cj

X , we can represent this problem as follows:

min
n

∑
i=1

[c j
i xi + c j

i (1− xi)]yi

A yT = b
yi ∈ {0,1} i = 1, . . . ,n

Using the assumption that matrixA is totally unimodular, we can relax constraintsyi ∈
{0,1} obtaining the following problem that has the same minimal objective function
value:

min
n

∑
i=1

[c j
i xi + c j

i (1− xi)]yi

A yT = b
0≤ yi ≤ 1 i = 1, . . . ,n

(5)

We can now construct a dual problem to (5). Letu j be a vector of dual variables,φ(u j)
be the objective of the dual and letΨ j(x) be the set of feasible dual vectors. So, the
dual is maxu j∈Ψ j(x) φ(u j) and it is linear with respect to bothu j andx. The strong
duality theorem now implies

F̂(cj
X ) = min

Y∈Φ
F(Y,cj

X ) = max
u j∈Ψ j(x)

φ(u j).

SinceF(X ,cj
X ) = ∑n

i=1 c j
i xi, model (4) can be rewritten as follows:

minλ
n

∑
i=1

c j
i xi− max

u j∈Ψ j(x)
φ(u j)≤ λ j = 1, . . . ,k

A xT = b
xi ∈ {0,1} i = 1, . . . ,n
λ ≥ 0

(6)

We can skip the maximum operator in (6) obtaining the following equivalent model:

minλ
n

∑
i=1

c j
i xi−φ(u j)≤ λ j = 1, . . . ,k

A xT = b
u j ∈Ψ j(x) j = 1, . . . ,k
xi ∈ {0,1} i = 1, . . . ,n
λ ≥ 0

(7)

The formulation (7) is a mixed integer linear programming model for MINMAX RE-
GRET with scenario set̃Γ = c̃1∪ ·· · ∪ c̃k. It can be solved by using a standard and
powerful software such as CPLEX or GLPK.
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Example 3. We illustrate the presented framework by an example. Suppose that
E = {e1, . . . ,en} is a set of items and we wish to select exactlyp of them, where
p > 0 is a given integer. This problem, calledminimum selecting items, has been dis-
cussed by Averbakh (2001) and Conde (2004). The solution setΦ in this problem
can be described by the single constraintx1 + x2 + · · ·+ xn = p. Obviously, matrix
A = [1,1, . . . ,1] is totally unimodular. The relaxed subproblem (5) takes thefollowing
form:

min
n

∑
i=1

[c j
i xi + c j

i (1− xi)]yi

y1 + y2 + · · ·+ yn = p
0≤ yi ≤ 1 i = 1, . . . ,n

(8)

Assigning dual variableu j
0 to the equality constraint and dual variablesu j

1, . . . ,u
j
n to

constraintsyi ≤ 1, i = 1, . . . ,n, we get the following dual model:

maxpu j
0−u j

1−·· ·−u j
n

u j
0−u j

i ≤ c j
i xi + c j

i (1− xi) i = 1, . . . ,n
u j

i ≥ 0 i = 1, . . . ,n

Consequently,φ(u j) = pu j
0− u j

1−·· ·− u j
n and setΨ j(x) is described by the 2n con-

straints of the dual model. We are now ready to design the MIP model using formula-
tion (7). This model takes the following form:

minλ
n

∑
i=1

c j
i xi− pu j

0 +
n

∑
i=1

u j
i ≤ λ j = 1, . . . ,k

n

∑
i=1

xi = p

u j
0−u j

i ≤ c j
i xi + c j

i (1− xi) i = 1, . . . ,n; j = 1, . . . ,k
u j

i ≥ 0 i = 1, . . . ,n; j = 1, . . . ,k
xi ∈ {0,1} i = 1, . . . ,n
λ ≥ 0

The obtained problem can be solved by using a standard software. �

4.2 An approximation algorithm

The main drawback of the minmax regret approach is that introducing more than one
possible cost realization may dramatically increase the time required to solve the prob-
lem. Therefore, for large problems, the timed required to solve the mixed integer
programming model designed in the previous section may be too long. Furthermore,
this model can be applied only to the problems fulfilling somespecific assumptions.

In this section we design an approximation algorithm for theproblem. The idea
is to solve a deterministic problem for a particular cost vector constructed from̃Γ.
Therefore, the approximation algorithm will be general andit can be applied to any
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discrete optimization problem under the assumption that wecan solve somehow its
deterministic counterpart.

Before we proceed we introduce some additional notations which will simplify
further considerations. Let us defineD j(X) = D(X ,cj

X ) andD(X) = maxj=1,...,k D j(X).
Now, using (2), we can see the MINMAX REGRETproblem is equivalent to minimizing
D(X) over all X ∈ Φ. Le also denoteOPT = minX∈Φ D(X), soOPT is the maximal
regret of an optimal minmax regret solution. Consider ALGORITHM AM shown in
Figure 3. This algorithm forms first a particular cost realization c using the scenario
setΓ̃ and returns then an optimal solution underc.

Figure 3. An approximation algorithm for the MINMAX REGRETproblem

ALGORITHM AM
Require: A M INMAX REGRETproblem with scenario set̃Γ = {c̃1, . . . , c̃k}
Ensure: A feasible solutionY ∈Φ

1: for all e ∈ E do
2: ce← ∑k

j=1(c
j
e + c j

e) {Form a cost vectorc}
3: end for
4: Output an optimal solutionY ∈Φ under cost vectorc

Notice that fork = 1 ALGORITHM AM boils down to the 2-approximation algorithm
constructed by Kasperski and Zieliński (2006). ALGORITHM AM can also be viewed
as a generalization of thek-approximation algorithm proposed by Aissi et al. (2007).
If we apply the algorithm to the problem from Example 2, then we need to solve
a deterministic shortest path problem for the cost vector[11,19,12,18,9] and as a
result we get pathX = {e2,e5}. We now explore the quality of a solution returned by
ALGORITHM AM.

Theorem 1. ALGORITHM AM outputs a solution Y ∈Φ such that D(Y )≤ 2k ∗OPT .

Proof. Let X ∈ Φ andY ∈ Φ be two feasible solutions. The following two formulas
have been established by Kasperski and Zieliński (2006):

D j(X)≥ ∑
e∈X\Y

c j
e− ∑

e∈Y\X

c j
e (9)

D j(Y )≤ D j(X)+ ∑
e∈Y\X

c j
e− ∑

e∈X\Y

c j
e (10)

Inequalities (9) and (10) imply

k

∑
j=1

D j(X)≥
k

∑
j=1

[

∑
e∈X\Y

c j
e− ∑

e∈Y\X

c j
e

]

, (11)

k

∑
j=1

D j(Y )≤
k

∑
j=1

D j(X)+
k

∑
j=1

[

∑
e∈Y\X

c j
e− ∑

e∈X\Y

c j
e

]

. (12)
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Assume thatY is the solution returned by ALGORITHM AM. Then, for anyX ∈Φ

∑
e∈Y

k

∑
j=1

(c j
e + c j

e)≤ ∑
e∈X

k

∑
j=1

(c j
e + c j

e),

which, after simple algebraic manipulations, is equivalent to

k

∑
j=1

[

∑
e∈X\Y

c j
e− ∑

e∈Y\X

c j
e

]

≥
k

∑
j=1

[

∑
e∈Y\X

c j
e− ∑

e∈X\Y

c j
e

]

. (13)

Now formulas (11) and (13) imply

k

∑
j=1

D j(X)≥
k

∑
j=1

[

∑
e∈Y\X

c j
e− ∑

e∈X\Y

c j
e

]

,

which together with (12) yield

k

∑
j=1

D j(Y )≤ 2
k

∑
j=1

D j(X). (14)

Inequality (14) implies

max
j=1,...,k

D j(Y )≤ 2k ∗ max
j=1,...,k

D j(X).

In particular, ifD(X) = maxj=1,...,k D j(X) = OPT , thenD(Y ) = maxj=1,...,k D j(Y ) ≤
2k ∗OPT , which completes the proof.�

Observe that if the deterministic problem is polynomially solvable, then ALGORITHM

AM runs in polynomial time. So, it can be used to obtain approximate solutions for
very large problems. However, this algorithm can also be applied if the deterministic
problem is NP-hard. But in this case its running time may be not polynomial.

4.3 Computational tests

In this section we present some results of computational tests. Out aim is to compare
the MIP formulation to ALGORITHM AM designed in the previous section. We wish
to identify the factors that have the most influence on the computation times and on
the quality of solutions returned by ALGORITHM AM. The tests were performed on
the minimum selecting items problem described in Section 4.1 (see Example 3). Let
us denote by(n,k,d) a family of minimum selecting items problems where:

(i) n is the number of items. We fixp = dn/2e to obtain the largest solution space.

Notice that the size ofΦ is

(

n
dn/2e

)

, which becomes a huge number for

rather smalln.

(ii) k is the number of interval scenarios.
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(iii) d is a degree of uncertainty of the interval scenarios. Namely, every interval
[c j

i ,c
j
i ] is generated randomly so that it is fully contained in the interval [0,100]

and its width is such thatc j
i − c j

i ≤ d.

In our tests we have chosenn = 60,80,100,k = 2,3,4,5 andd = 20,40,60. For
every combination ofn, k andd we have generated and solved 10 instances. All the
tests were performed on a computer equipped with a Core Duo 1.8GHz processor with
1GB RAM. The GLPK 4.21 solver was used to solve the MIP models.The obtained
results are shown in Table 1. In column tm. the average computation times in seconds
required to solve the MIP formulation and obtain an optimal solution are shown. In the
next three columns the percentage average, minimum and maximum deviations from
optimum, i.e. the values of 100(D(Y )−OPT )/OPT , reported for solutionsY returned
by ALGORITHM AM are shown.

Table 1. The results of computational tests

family tm. av. min max family tm. av. min max family tm. av. min max

(60,2,20) 0.0 17.0 0.0 29.8(80,2,20) 0.0 9.7 0.0 30.1(100,2,20) 0.0 12.0 2.1 21.7
(60,2,40) 0.0 18.8 5.3 40.6(80,2,40) 0.0 14.8 7.8 19.9(100,2,40) 0.6 17.8 2.5 32.1
(60,2,60) 0.4 16.9 4.16 27.0(80,2,60) 0.9 12.0 5.6 20.7(100,2,60) 6.1 8.5 0.1 24.6

(60,3,20) 0.4 17.8 0.0 40.4(80,3,20) 0.9 13.1 7.4 27.8(100,3,20) 1.8 16.4 3.0 31.1
(60,3,40) 1.0 19.9 6.0 40.9(80,3,40) 1.5 14.8 2.9 30.0(100,3,40) 5.6 16.6 5.7 23.0
(60,3,60) 6.8 19.1 3.2 32.1(80,3,60) 16.4 14.0 6.2 20.9(100,3,60) 369.4 17.3 8.1 26.0

(60,4,20) 1.8 19.0 6.2 34.1(80,4,20) 4.6 22.6 9.0 48.5(100,4,20) 9.1 16.4 5.5 30.2
(60,4,40) 3.5 19.0 2.7 31(80,4,40) 10.5 14.6 2.0 31.0(100,4,40) 44.5 14.9 6.2 33.4
(60,4,60) 57.4 14.8 4.3 27.2(80,4,60) 421.2 16.0 3.4 33.3(100,4,60) 1074.2 16.0 6.8 30.0

(60,5,20) 5.5 21.6 6.5 56.1(80,5,20) 17.0 23.2 4.6 49.0(100,5,20) 65.6 16.9 7.2 22.8
(60,5,40) 6.1 20.1 13.5 25.6(80,5,40) 28.2 22.7 9.0 30.3(100,5,40) 254.0 16.5 11.0 25.0
(60,5,60) 42.8 19.0 9.6 37.0(80,5,60) 558.5 17.1 7.3 25.6(100,5,60)>3600 ? ? ?

Note: ‘tm.’ denotes the average computation times in seconds required to solve the MIP formulation;
‘av.’, ‘min’, ‘max’ denote the percentage average, minimum and maximum deviations from optimum
reported for a solution returned by ALGORITHM AM, respectively.

As we can see from the obtained results, the computation times increase with the
number of items and the number of scenarios, which is not surprising. However, the
increase with the number of scenarios is very quick - especially for the families with
100 items. The MIP formulation is efficient only if the numberof scenarios is a small
number. Interestingly, the computation times also increase with the degree of uncer-
tainty d. Notice that we were unable to solve the family(100,5,60) within less than
1 hour. For larger problems, having a large number of interval scenarios, ALGORITHM

AM should be used. Observe that the largest percentage deviation from optimum re-
ported for all generated 350 instances is 56.1%, while the average percentage deviation
over all instances is about 17%. So, the average performanceof the approximation al-
gorithm seems to be much better than its theoretical worst case behaviour. Therefore,
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the simple approximation algorithm is a good choice if the MIP solver fails to compute
an optimal solution in a reasonable time.

We have performed the tests for a particular problem. We conjecture, however,
that a similar performance will be reported for other problems. In particular, the same
factors will influence on the computation times.

5. Conclusions

In this paper we have proposed an extension of the known minmax (regret) approach
to discrete optimization. This approach allows us to model two different types of un-
certainty. The first, called a structural uncertainty, models some unpredictable events
having a global effect on a considered system and the second,called a local uncer-
tainty, is connected with an imprecise nature of costs. We have introduced scenario set
Γ̃ being an union of a number of interval scenarios. In order to choose a solution we
have applied minmax and minmax regret criteria. In most cases the discussed approach
leads to problems which are computationally hard. Having a particular problem one
can try to apply a mixed integer programming formulation to obtain a solution. If it is
not possible or an optimal solution cannot be obtained in a reasonable time, then the
proposed approximation algorithm can be used.
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Kasperski, A. and Zielínski, P. (2008). On the Approximability of Minmax (Regret)
Network Optimization Problems. (forthcoming inInformation Processing Letters,
DOI: 10.1016/j.ipl.2008.10.008)

Kasperski, A. (2008). Discrete Optimization with IntervalData. Minmax Regret and
Fuzzy Approach.Studies in Fuzziness and Soft Computing, vol. 228. Berlin, Heidel-
berg, Springer-Verlag.

Kouvelis, P. and Yu, G. (1997).Robust Discrete Optimization and Its Applications.
Boston, Kluwer Academic Publishers.

Luce, R. D. and Raiffa, H. (1957).Games and Decisions. Introduction and Critical
Survey. New York, Dover Publications, Inc.

Montemanni, R., Gambardella, L. M., Donati, A. V. (2004). A Branch and Bound Al-
gorithm for the Robust Shortest Path Problem with Interval Data.Operations Research
Letters, 32(3), 225–232.

Montemanni, R. and Gambardella, L. M. (2005). A Branch and Bound Algorithm for
the Robust Spanning Tree Problem with Interval Data.European Journal of Opera-
tional Research, 161(3), 771–779.

Papadimitriou, C. and Steiglitz, K. (1998).Combinatorial Optimization. Algorithms
and Complexity. Mineola, New York, Dover Publications, Inc.

Savage, L. J. (1951). The Theory of Statistical Decisions.Journal of the American
Statistical Association, 46, 55–67.

Yaman, H., Karasan, O. E. a d Pinar, M. C. (2001). The Robust Spanning Tree Problem
with Interval Data.Operations Research Letters, 29(1), 31–40.

Yu, G. and Yang, J. (1998). On the Robust Shortest Path Problem. Computers and
Operations Research, 25(6), 457–468.

250 AUCO Czech Economic Review, vol. 2, no. 3


