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Abstract We introduce and analyze the following variants of the Borda rule: mediadeBule,
geometric Borda rule, Litvak’s method as well as methods based otirfgtimear combinations
of entries in the preference outranking matrix. The properties we fggos are the elimination
of the Condorcet loser as well as several consistency-type criteria.
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1. Introduction

In a paper delivered in the French Academy of Sciences in U&ah-Charles de
Borda introduced a point voting system, nowadays knowna8titda Count (BC, for
brevity), for electing best candidates in multi-membeilingtbodies (Borda’s memoir
has been translated into English and reprinted in Black&)1L85 well as McLean and
Urken (1995)). Borda’s proposal was specifically desigreedeplace the then (and
now) widespread plurality rule which gives each voter onte\and elects the candi-
date with larger number of votes than any other candidate.

Despite its initial success in the French Academy, BC hasbheen widely used
in elections involving candidates. Some critics have pmirto BC's vulnerability to
strategic voting especially under circumstances wherengroups have information
about the popularity of various candidates. Others havent&sue with BC'’s failure
to guarantee the election of an eventual Condorcet winmeraicandidate who is not
defeated by any other candidate in pairwise comparisongndre recent times, the
significance of the latter failure has been called into qoegSaari, 1995).

Our focus is on some variations of BC in settings involvingiden making by
expert groups. The setting is admittedly a special one andrés the wider context
in which most group decisions are made. So, questions lileedettermines the set of
alternatives or criteria to be used in comparisons are ogkéd. Similarly, we do not
consider strategic behavior by the individuals. Our fosumore narrow, but nonethe-
less important. We deal with various conceptualizationthefnotion of “socially best
alternative” or “the most defensible collective preferemanking of alternatives”. We
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shall look at BC variations from the viewpoint of improvingan BC: are the varia-
tions significantly superior to BC in expert group choiceiags? As an example of
such a setting is the choice of projects to be funded by a fighaiiganization (e.g. EU)
on the basis of their evaluation by a group of experts (refreWe are considering
ways of utilizing the expert information in richer ways thtalay is often the case in
funding organizations where the experts are asked whiclicapipns are acceptable
or which are the best. Some of our criteria also pertain texealized settings where
the experts form subgroups each considering the same sgplidations. Some other
BC variations have been discussed in an earlier articleri@®007).

The relevance of the following discussion extends widen tr@up choice settings.
To wit, all of what is going to be said regarding experts orevetcan be translated
into another setting involving multiple performance aiiie Substituting criteria for
experts or voters we can discuss multiple criterion dexigimblems using the same
techniques. Hence even decision settings where one decisadier is assigned the
task of selecting best projects or other alternatives usavgral criteria of evaluation
fall within the range of our discussion. The main assumptmbe made is that the
evaluation of the alternatives on each criterion allowsdi@inal measurement. This
is a quite common setting since typically only part of theesia can be measured by
ratio or absolute scales of measurement. Hence, the agdigregaoblem involving
ordinal measurement is frequently encountered.

The setting which we are focusing upon —i.e. the choice by afsxperts — is in
fact more in line with what the founding fathers of social icleohad in mind than the
election of candidates to political offices. Condorcet andda were preoccupied with
jury decision making, i.e. a setting where one aims at a cbofeoice assuming that
each decision maker has some expertise in the issue to likededilso C. L. Dodgson
was interested in non-political decision making: awardingolarships to students in
Oxford colleges of the 19th century (Black, 1958). In thesitisgs it is quite natural
to assume that the experts, judges, referees or evaluatoebbe to form a priority
ranking over the applicants or alternatives and the task &ygregate those rankings
into collective ones in a logically defensible manner. 8itie experts, referees, judges
etc. are expected to use their specific expertise in forntiag bpinion on the decision
alternatives at hand, it is very important that the infolioraprovided by the experts is
aggregated in a way that is non-arbitrary and satisfies blieusriteria of consistency
and adequacy.

Among ordinal aggregation methods BC provides a useful lmack in utilizing
fully the information contained in preference or perforroamankings. Many other
methods — e.g. plurality or antiplurality rules — use onlytjgdly the information given
in rankings. We will use BC itself as a kind of benchmark metlamong the posi-
tional systems, i.e. among rules that determine the “ebditid of an alternative on
the basis of its average position in the experts’ preferaecbedules. The way the so-
cial preference ranking is determined on the basis of thvighaal rankings is very
straight-forward in BC: each rank position is assigned aeah a scale so that the dif-
ference of values of two consecutive positions equals uRitiyna facie, it is a logically
defensible method. BC or slight variations of it are usedumd¥ision song contests,
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making nomination proposals for the offices of universitgrotellors, bishops etc. In
political elections, BC is used in the Pacific island stat&ioibati.

In away, BC is well-suited as a benchmark system among th&qrad ones since
it provides a neutral and anonymous treatment of all ranktipos and individuals.
Unless one has a specific reason to put more weight to somiiopssor individual
judges, this seems a reasonable way to proceed. That BC rdaypemith Condorcet
failures — i.e. not rank the Condorcet winner first in the edilve preference — may
then come as an unpleasant surprise. Hence, one might loakafs of improving
the performance of BC by making some modifications in its afieg principles. And
indeed, more than a hundred years ago Nanson proposed mghisteguarantees the
choice of an eventual Condorcet winner while otherwisela@hp the crucial features
of BC (Nanson, 1883). It later turned out that the improvetreame with a cost:
Nanson’s rule is non-monotonic, while BC is monotonic. lhestwords, in Nanson’s
method an improvement in an alternative’s ranking, ceteaisbus, may worsen its
position in the collective ranking. This is not possible enBC.

Observations like this made us curious: are there any pasitisystems “close”
to BC that would improve upon its properties while retainitgyplausible features?
Since BC is based on arithmetic average positions of aliggsa we ask whether BC
modification in terms of geometric averages would be an ivgreent. Similarly,
we ask whether replacing averaging by looking at mediantipasi would improve
the performance of BC. These are but two possible modificataf BC which are
intuitively “close” to BC proper. Together with results other BC variations, our
results, summarized in Table 10, suggest that BC is indgaet&u to its modifications
among positional systems.

We start by introducing the notation and basic definitionse then define the
modifications of BC to be studied. The criteria of evaluatidnthe modifications are
then discussed.

2. Preliminaries

A preference aggregation probleis a tripleA = (N, X,RY), whereN is a nonempty
finite subset of natural numbeks= {0,1...}, X is a nonempty finite set, aridN =
(R)ien is aprofile of preferences Ron X. A preferenceR on X is a binary relation
satisfyingtransitivity (xRyandyRzimpliesxR2 andcompletenes&Ryor yRzfor all
X,y € X). As usual, we denote the membership relation in this caritgxRyinstead
of (x,y) € R. The strict part of a preferené¢®is denoted by (xPyiff xRyand notyRx),
and the indifference is denoted byxly iff xRyandyRX. A preferenceR is strict or
linear, if xRyandyRximpliesx =Yy, for all x,y € X. We denote the set of all preference
aggregation problems (or simply problems).d/

An interpretation of the model is thatis the set of agent¥ is the set of states of
alternatives, an#Ry means that agemiprefers at least weakly the alternativéo the
alternativey.

An aggregation rules a functionf such thatf (A) is a preference oX for each
aggregation problem € «7. The interpretation is that(A) is the social preference
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representing the tastes of the of the agents in the proBleithere is no shortage of
aggregation rules. For example, tHtA) be the least index ilN for any aggregation
problemA, and definef (A) = Rys). This is one form of adictatorial rule. The
celebrated Arrow’s impossibility theorem states that giiregation rules, satisfying a
set of apparently plausible axioms, are dictatorial. Arfownulated his theorem for
problems with a fixed sé¥l of agents, but the result can be extended to the domain of
problems with variable agent sets.

Given a problenA = (N, X,RN) € &, letbi(x) = |{y € X | xRy}|, for eachi € N
andx € X. Thenbj(x) is the number of alternativasthat ini’s opinion are at most as
good asx, in a given problenA (the dependence @f on A is not explicitly displayed
unless absolutely necessary). Barda rule 2 is defined by

A= 3 b )

for eachx € X, for eachA = (N, X,RN) € 7. We may calbj(x) the Borda pointgiven
to alternativex by agenti. Then fB(A)(x), the Borda scoreof alternativex, is the
average of individual Borda points. Sometimes the Bordaescare defined by taking
the sum of individual Borda points, and sometimes the Bomat;(x) is defined
as the number of alternatives that are strictly worse tha@ften the Borda rule is
defined only for problems with linear preferences. For adlgtical purposes these
different variants of the Borda rule are the same.

Given a problenA = (N, X,RN) € &7, letn(x,y) = |{i € N | xRy}|, for eachx € X,
for eachA = (N,X,RN) € 7. Thenn(x,y) is the number of agents in the problem
A who preferx to y at least weakly (the dependencergk,y) on A is not explicitly
displayed unless absolutely necessary.) It is well knowan th

P00 =1 5 nixy) @
ye
for eachx € X, for eachA = (N, X,RV) € «7. This means that the Borda score of the
alternativex is actually the average number of individuals who weaklyfgarg to vy,
asy runs through the alternatives ¥a A simple way to see that equations (1) and (2)
are equivalent is the following. L& be an|X| x |X| matrix whose rows and columns
are indexed by members &f, and whosex,y)-cell R (x,y) is 1 if xRy and 0 other-
wise. Thenb;(x) = zyﬁi(x,y) is the number of 1's in th&'th row. Therefore by (1),
fB(A)(>9 = (1/n)3; zyf\’i(x,y). This is the same as constructing first thetranking
matrix R= 3;R;, the sum of theR-matrices, and then taking the average of the cells
of thex'th row of the outranking matrix. But this in turn i%(A)(x) as calculated in
equation (2).

Instead of taking arithmetic averages of the Borda point) or the numbers
n(x,y) as in (1) and (2), we could take the medians or geometric gesraf these
numbers. Given am-dimensional vectoy (or an indexed sefy; | i € I,|I| = m}),
the median oM(y) of y is calculated as follows. Index the coordinatesydiy the
numbers 1...,mso thaty; <y;if i < j,i,j e {1,...,m}. If mis odd, therm= 2k +1
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for somek € N, andM(y) = yk.1. If mis even, therm = 2k for somek € N, and
M(y) = (Yk +Yk+1)/2. The geometric averade(y) of the coordinates of is G(y) =
VTV, if all numbersy; are nonnegative, whef@; y; is the product of the numbeys

For all problemsA = (N, X,RY), let b(x) be the vector(bj(x))ien and letn(x)
be the vector(n(x,y))yex. Applying the median, we define the rulé¥® and fM"
by fMP(A)(x) = M(b(x)) and fM(A)(x) = M(n(x)), for all x € X, for all problems
A= (N,X,RV). Applying the geometric average, we define the rul€8 and fC"
by fEP(A)(x) = G(b(x)) and fE"(A)(x) = G(n(x)), for all x € X, for all problems
A= (N,X,RY).

Another variant of the Borda count is obtained upon consgideagain theéX| x |X|
outranking matrixR of the problemA and focusing on the smallest entry on each
row. This is obviously the minimum support an alternativeeiges in all pairwise
comparisons. The order of those minima gives us a rankingailvalternatives. More
formally, denote the entry on the ranand columry by R(x,y). For eachx € X let

r,=ming R(x,y) and Mm(A) = {xe X |r,>r,,Vze X}.

This is the well-known Simpson-Kramer maximin rule (Simpsb969; Kramer, 1977).

Other variations can easily be cooked up. Following theitiotu that in decision
theory goes under the name Hurwicz’s rule, we can fix a nurobei0, 1] and define
for eachx € X (Milnor, 1954):

Tx=max R(x,y) toget h(x)=arx+(1—a)r,.

Then, the choice set can be obtained as:

H(A) = {xe X | N(x) > N (x),Vze X}.

In other words, one maximizes the weighted sum of maximumnaimimum entries
on each row. Witta =1, H(A) = Mm(A). Obviously, bottMm(A) andH (A) allow for
ranking over all alternatives, so a social preference cdiormeed. Both utilize essen-
tially less information about voter preferences than thedBa@ount and its geometric
average variation.

A choice method devised by Litvak (1982) is very much in thieitspf the Borda
count. Consider two individuals and their rankings o¥erThe individuals disagree
about the priority of the alternatives to the extent theitkings differ. One way of
measuring this disagreement is to sum up the Borda poimrdiftces, i.e.

dis(Ry,Re) = Z( [b1(X) — b2(X)|

The values of thalis measure range from 0 ¥ o[(k — 1) — (2i)], wherek is the
number of alternatives. Litvak’s method looks for a conssmanking over alternatives
that is closest to the expressed opinions (ranking) of idd&is in the sense of thdis
measure. To wit, given a preference proff® of n voters, define the distance of a
fixed rankingR andRN as follows:
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dis(RV,R) = bi(x) — b )
is(R™,R) j;X;I (%) = by (x) |

whereby (%) denotes the Borda points assigned tay the rankingR.
Let Z be the set of all rankings ovéralternatives. GiverRY, Litvak’s method
results inR € Z where

L(A) = {Re Z | dis(R,RY) < dis(R,RY),VR € #}.

Variations of Litvak’s method can easily be envisioned. &ample, the city-block
metric could be replaced by the Euclidean one. Or, one caddsf only on the first
rank of the consensus ranking and sum up, for each alteendtie difference between
the alternative’s position and the first rank. This variatioowever, leads us back to the
Borda count (Nitzan 1981). This shows not only that with “agyconsensus profiles
and distance measures one is able to construct differemmoaet but also that choice
rules can be expressed in several ways.

Further variations are based on certain entries in the iokitrg matrix, such as
two smallest and two largest ones, two entries closest thendan one etc. Similarly,
the weights assigned to various entries can be varied to piwith new variations.
Instead of defining these largely ad hoc rules, we shall focusnalysis on the rules
explicitly defined above. Our basic interest is in finding wiether any of these can
be considered an improvement over the original version,thiz Borda count.

3. Properties of Borda variations

3.1 Eliminating Condorcet losers

Arguably the primary motivation for BC was the fact that iveeelects the eventual
Condorcet loser in the reported profile. In other words, velwenthe profile expressed
by the voters contains an alternative that would be defaatel other alternatives in
pairwise majority comparisons, this alternative is notB&winner. Had Borda been
introduced to the median Borda coufif®, he would, therefore, have been largely
unimpressed since it turns out that this system may end upars@tondorcet loser. The
following 7-voter profile is illustrated in Table 1. Here Btlse Condorcet loser and is
at the same time thEMP-winner.

Table 1. Median BCfMP may elect a Condorcet loser

1 voter ABCDE
1 voter CBADE
1 voter DBEAC
1 voter EBADC
1 voter ADCEB
1 voter ACDEB
1 voter CDEAB

114 AUCO Czech Economic Review, vol. 2, no. 2



More Borda Count Variations for Project Assesment

Let there bek alternatives andah voters. When all voter preferences are strict and
the number of voters odd, we can formka k matrix T = [ty], X,y € X, of 0’s and
1's so that a 1 in rowx and columry means that alternativigs preferred to alternative
j by more than 50% of voters. Otherwise, the entry is On I§ odd and all voter
preference strictyy = 1 implies thatyy, = 0 whenx # y. Thus, the number of 1's il
isw=Kkx (k—1)/2.

We now show that the median Borda systéM" based on outranking numbers
does not result in an eventual Condorcet loser being elected

Proposition 1. Let n be odd and all preferences strict. If T contains a row xhsd
Yytxy > k/2, then the Condorcet loser cannot win ¥ is used.

Proof. The proof is immediate upon observing that if the number sfd at leask/2,
the median entry in row of the corresponding outranking matrix is strictly largesin
n/2, while the median entry on the row corresponding to the exaiCondorcet loser
is strictly less tham/2. Hence, the Condorcet loser is not chosen wheri #esystem
is used.]

Proposition 1 establishes a sufficient condition for thediwoet loser not being chosen.
The next proposition shows that whenever there is a Conttmser, the condition is
satisfied.

Proposition 2. Assume that n is odd and all preferences are strict. If thei@ Con-
dorcet loser in the problem A (N, X,RV), then there is a row x such that ty > k/2.

Proof. Suppose to the contrary that for allytyy < k/2, and soy ytyy < (k—1)/2.
Therefore

T by <kx (k-1)/2=w
Xy

But this must be satisfied as an equality by the definitiow.oB0 ¥ty > (k—1)/2
and there is no Condorcet loser, a contradictidn.

The maximin method, in contrast, may end up with a Condowsdr| as shown
in the example of Table 2. Here D, the Condorcet loser, getsrtinimum support of
14 which exceeds that of all other alternatives. Litvak'sime can also lead to the
choice of a Condorcet loser (Nurmi, 2004, p. 9).

Consider now the maximax method, i.e. a method that resuttsei choice of the
alternative with the largest maximal element in its row ie tutranking matrix. It
is apparent that whenever there is a Condorcet loser in theredd profile, it cannot

Table 2. Maximin method may elect a Condorcet loser

10 voters DABC
8 voters BCAD
7 voters CABD
4 voters DCAB
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Table 3. Both P and f " may elect a Condorcet loser

1 voter ABCDEFGHIJ
1 voter JABCDFEGHI
1 voter IJABCFDEGH
1 voter HIJABFCDEG
1 voter GHIJAFBCDE
1 voter EGHIJFABCD
1 voter DEGHIFJABC
1 voter CDEGHFIJAB
1 voter BCDEGFHIJA

be elected under the maximax method. This follows from tHanidien of Condorcet
loser. Since itis defeated by a majority by every other aliive, this means that every
other alternative has a larger element in its row than anynete in the Condorcet
loser’s row. Consequently, the latter cannot win.

Now, since the maximin may lead to the choice of a Condorcsgrlowhile the
maximax method never ends up with one, it follows there areMitz type methods,
i.e. ones based on weighted average of the minimum and maxiemiries on each
row of the outranking matrix, that necessarily exclude tlomddrcet loser and also
methods of the same type that may choose the Condorcet loser.

Consider next the method of forming the social preferencedoyparing geometric
averages of either the rows of the outranking matffx"j or the Borda points given to
alternatives by the voterd €°). It turns out that the Condorcet loser may be selected
as the unique socially best alternative by both methodse @akok at Table 3, where
the strict preferences of nine voters over ten alternativeslepicted.

The alternative F is a Condorcet loser, every other altmbeats it by votes 5 - 4.
So the row of the 1& 10 outranking matrix corresponding to alternative F cdss$
nine 4’s and one 9 (F is at least as good as itself in the eydb\adtars). The product
of these numbers is therefor®-49. The other rows of this matrix consist of the whole
numbers from 1 to 9, the number 5 appearing twice. The proafutiese numbers is
91 x 5. Since 4 x 9> 9! x 5, the Condorcet loser is on the top of the social preferences
when geometric averages of the rows of the outranking matexompared, i.e. when
the f®" rule is used.

Now bj(F) = 5 for all votersi, and the product of these numbers s Bor all other
alternatives x the Borda poinbs(x) are all natural numbers between 1 and 10 except
5. So the product of Borda points for all alternatixes F is 10!/5. Since 8 > 10!/5,
the Condorcet loser is on the top of the social preferencenwkometric averages of
the Borda points of alternatives are compared, i.e. wheri #eule is used.

3.2 Consistency-related properties

The properties we shall focus upon asparability(Smith, 1973)consistencyYoung,
1974),faithfulnesgYoung, 1975) angbositive involvemer(Saari, 1995, p. 216).
Separability requires that if two voter grougsandV, both prefer alternativa to
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alternativeb, then so does the combined grovp= Vi1 UV,. Moreover, if one of the
group preferences is strict, this is also the case for thiemece ol

Consistency states that if two disjoint groups of individs; andV, when choos-
ing from the same set of alternativis choose the same alternativés(and possibly
some others as well), then the groudp= V; UV, should chooseX’. Young points
out that consistency is a version of Pareto optimality fdsggoups sinceX’ only is
preferred to all other alternatives by the subgrodpandV, considered as individuals.

Faithfulness is an intuitively compelling property (Yourkp74). It states that if
the voting body consists of only one individual, then theiglogreference ranking is
identical with the individual’'s preference ranking. Nofaisystem is both faithful and
consistent, then it also satisfies unanimity or Pareto ¢mmdii.e. in profiles where all
individuals agree on the first ranked alternative, thisraive is chosen.

A procedure is positively involved if, whenevaiis chosen by, it is also chosen
if a group of voters, with identical preferences so théitst ranked, joind/.

The above properties are pretty close to each other, but byeans equivalent.
Saari (1995, p. 218) shows that any scoring rule that isffdiind consistent is also
positively involved, but not all faithful and positivelyvolved scoring rules are con-
sistent.

It is known that BC is faithful and consistent (Young, 1974jence it is also
positively involved and satisfies the Pareto condition. ffteglian BCfMP, in contrast,
is not consistent. This is illustrated by Table 4, where thefile above the middle
horizontal line denotes the profile df and that below the line depicté’s profile.
The choice sets arfA, B} and{A}, respectively. Their intersection is obviougl},
but fMP specifies{A, B} as the choice set ivh U V5.

The other median Borda variation" is not consistent either. This is shown by
Table 5. The choice set from the profile above the middle B} and{A,C} from
the profile below it, while the entire profile of 6 voters engswith {A,C}.

Young's (1975) theorem on social choice scoring functicases that all anony-
mous, neutral and consistent procedures fail on the Coatieioning criterion. Hence,
if the maximin method — which is anonymous and neutral — weresistent, it would
have to fail on the Condorcet winner criterion. Maximin igwever, not a scoring
rule. So, even though it fails on the Condorcet winner dotgrwe are not entitled to

Table 4. fMP js not consistent

1 voter ABCD
1 voter ABDC
1 voter BACD
1 voter BCDA
1 voter ABCD
1 voter ABDC
1 voter DABC
1 voter CDBA
1 voter CDAB
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Table 5. fMn is not consistent

1 voter ACBD
2 voters BACD
1 voter ACBD
2 voters CABD

Table 6. Maximin is not consistent

4 voters ABC
3 voters BCA
3 voters CAB
5 voters ACB
4 voters CBA

the conclusion that it is inconsistent. Table 6, howeveswshby way of an example
that it is inconsistent. The maximin choice set in the upmek lawer parts consists of
A, while the choice from the entire 19 voter profile is C.

Maximax rule is not consistent either. This is shown in TableThe maximax
choice sets aréC} and{A,C}, but the choice from the combined profile{ia}.

Both geometric BC variationsf,®? and f&", in turn, are consistent. This results
from the observation that whenever the product of the Bocdees or outranking num-
bers are largest i, and inV,, the product of those products must also be larger than
the corresponding product for any other alternative.

Also Litvak’s method turns out to be inconsistent as showrnth®y example of
Table 8. Denote the part above the middle lin&/aand that below the middle line as
V,. Then the choice sets ¥, V, andV are{B}, {A,B} and{A}, while consistency
would dictate{B} as the choice set frow.

Turning to faithfulness we observe that BC satisfies thiperny (Young, 1974).
So doesfMP since the individual’s highest ranked alternative hasatly the highest
median Borda score, the second-ranked the next highestoaod. sin contrastfM"
is not faithful. This can be seen by considering a 3-altéraatase and ignoring the
diagonal entries of the outranking matrix. TR¥" choice set consists of the first and
second ranked alternatives, a contradiction with faitiggk.

One of the geometric Borda variations is not faithful, vi&". This is easily seen

Table 7. Maximax is not consistent

3 voters ABC
3 voters BCA
3 voters CAB
1 voter CBA
2 voters ACB
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Table 8. Litvak’s method is not consistent

5 voters ABC
4 voters ACB
2 voters BAC
5 voters BCA
3 voters CBA
2 voters ABC
2 voters BAC

since all rows in the outranking matrix contain at least cgv®@ avith the sole exception
of the row that represents the first-ranked alternative. ddethe f&" ranking is a
dichotomous one: first-ranked alternative first with the feeming a tie. The other
geometric variationf®?, on the other hand, is faithful since the collective ranking
coincides with that of the only individual forming the caltevity.

The maximin method fails on faithfulness as well since als@xcept that corre-
sponding to the first-ranked alternative contain a zero,refhyeall these alternatives
tie for second place even in cases where the individual haskang without any ties.
Similarly, the maximax is not faithful either.

Litvak’s method, in its turn, is faithful as the individusltanking is at the shortest
distance from itself. Thus, this ranking is also the coliecbne.

Positive involvement is satisfied by BC since it is a scorulg and satisfies faith-
fulness and consistency. The geometric Borda f{i&— the rule that maximizes the
geometric average of the product of Borda points given td ediernative — is also
positively involved since adding an individual with pregace ranking that coincides
with the collective one entails multiplying the score of thi@ning alternative with the
largest individual Borda score, the second-ranked altemavith the second largest
Borda point etc. Hence the new score of the winning altevaasi larger than that of
any other alternative.

The other geometric versioff" is also positively involved. For suppose tlzeits
the first ranked alternative in a profile @f and then a group, of individuals with
identical preferences arafirst ranked joins the profile. In the outranking matriX\af
alternativea’s column consists of zeros only. This is also the caséis outranking
matrix. This means that the only row with non-diagonal estall greater than zero in
V1 UVz is a's row. The product of its entries is then the only one thded# from zero.
Hencea s elected by UV>.

The median Borda variatiorfM?, is not positively involved. This is shown in
Table 9. The upper part represents therofile whereC wins. Adding now the lower
part profile whereC is first ranked yield#\ the winner.

The median Borda variatioh", in contrast, is positively involved. This follows
from the fact that the winning alternativas row elements in the outranking matrix
will be added by the number of individualsV¥a. This means that the median entry on
a’s row in the outranking matrix of; UV, is added by the number of individuals\i.

In other rows the entries will be added P#| or not at all. In these rows the median
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Table 9. fMP is not positively involved

2 voters AFCDBEG
1 voter EDCABFG
2 voters BGCDEAF
2 voters CABDEFG

entries will be no larger than the corresponding medianesloV; plus |Vi|. Hence
the choice offM" remains the same after a group of identically minded indiald
with a their first ranked alternative joing. Thus,fM" is positively involved.

Litvak’s method is positively involved. The proof can sketd as the following
reductio ad absurdurargument. Assume thatis the Litvak winner (i.e. first ranked)
in V1. Assume, moreover, that consists of individuals with identical preference
rankings so tha is first in this consensus ranking. Finally, assume that améing
R wherex # a is the one that is at the minimal (Litvak) distance from thekiags
in Vp andV,. The trick is to show thaR can be improved upon, i.e. that it is not in
fact the ranking that is closest to the andV, rankings. This is seen by switching
aandx in Rto obtainR and observing thaR is closer to the rankings &f; andV,
thanR. HenceRis not at minimal distance. Hence, the claim that Litvak'stmoel is
positively involved follows.

Also the maximin method is positively involved. dfwins inV; and is joined by
V, of individuals with identical preferences so tlaais first ranked, each entry afs
row in the outranking matrix o¥; UV is added byVs UV5|, while only some entries
of other rows are similarly added. Hence, the minimal entnyas row remains the
largest.

Similar argument shows that the maximax method is alsoigesitinvolved.

4. Conclusion

Table 10 summarizes the results of the preceding. The maratheconclusion is that
BC beats the other systems discussed in this paper handsiddgrms of the criteria
we have dealt with. A reader with a more “binary” or “Conddiar” persuasion might
wonder why we haven't included the Condorcet winning cidterinto the picture.
This well-known condition states that if there is a Condom@ner in the profile
under investigation, this alternative should be choseariSde.g. Saari, 1995; Saari,
2006) works have cast a shadow over this criterion and, hemeéhave not used it
here. Another reason is that the Condorcet winning criteatien plays a crucial
role in various incompatibility results — such as incomipitity of Condorcet criterion
and invulnerability to the no-show paradox (Moulin, 1988)o6 Condorcet criterion
and nonmanipulability (@rdenfors, 1976). Therefore, if the Condorcet criteriomis
doubt, much of the practical importance of these resultaeps away.

Of course, it is not necessary to conduct project evaluatisith BC or any of
its modifications. We re-emphasize, however, the intuifie@pealing features of BC
in these contexts: all alternatives are handled neutrallyoters anonymously and
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Table 10. Summary assessment of methods

Criterion method  C-loser exclusion  Consistency Faithfulness  Positivevewent

BC yes yes yes yes
fMb no no yes no
fMn yes no no yes
fGb no yes yes yes
fGn no yes no yes
maximin no no no yes
maximax yes no no yes
Litvak no no yes yes

all positions have an equal value attached to them. Moretivedifference between
values of two consecutive positions is constant. The wedivkn drawback of BC that

itis vulnerable to introduction of “phantom” options (ikegant alternatives) can in the
project evaluation contexts be largely ignored since timtesiant project set is usually
fixed before the expert evaluation begins.
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