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Robust Turnpikes Deduced by the Minimum-Time
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Abstract In the paper, a one-sector neoclassical model with stochastic growth has been con-
structed. The major goal of the study is to characterize relevant mathematical properties of
efficient development paths for underdeveloped economies. Since economic maturity is a rea-
sonable objective, we mainly focus on the long-run features of economic development. Indeed,
the notion of economic maturity is well-defined in the model, and also a thorough characteriza-
tion of the minimum time needed toward economic maturity is offered with intuitive interpreta-
tions discussed. Moreover, it is confirmed that the capital-labor ratio corresponding to the state
of economic maturity provides us with a robust turnpike of the optimal path of capital accumu-
lation.
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1. Introduction

When concerning the issue of economic development for underdeveloped economies,
the principle of maximum speed is widely employed. In reality, the Germany and Japan
after World War II and China after 1978s (see Song et al. 2011) are typical examples.

Alternatively, provided the existence of maximum sustainable terminal path con-
sumption per capita (or von Neumann path consumption per capita), which would be
regarded as the state of economic maturity in a certain sense, the major goal of people
and government is to choose appropriate or optimal savings strategy and fiscal poli-
cies, respectively, such that the state of economic maturity can be reached as soon as
possible. Indeed, the underlying motivation of the present exploration, which is in line
with Kurz (1965), is to derive conditions under which the specified economy can reach
the maximum terminal path in a minimum time. In particular, we analyze the economy
before reaching economic maturity, and hence we focus on underdeveloped economies
and leave those economies having reached economic maturity to future research.

Although we focus on a one-sector neoclassical aggregate growth model (see Solow
1956; Cass 1965; Dai 2013, 2014a, 2014c), the present study extends Kurz’s analyses
in the following ways. First, we consider an economy lying in a persistently non-
stationary environment. Second, nature (or social planner) is incorporated into the
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macroeconomic model, and the endogenous savings rate and the minimum time form
a sub-game perfect Nash equilibrium (SPNE) of the stochastic dynamic game between
the nature and the representative agent. Third, the minimum time needed to reach
economic maturity is completely characterized by the maximum sustainable level of
terminal path capital-labor ratio (i.e., the state corresponding to economic maturity),
and also the terminal path of capital-labor ratio provides us with a robust turnpike (i.e.,
the equilibrium path of capital accumulation will robustly converge to this terminal
path in an asymptotic sense or will spend almost all time staying in a neighborhood
of the terminal path). In addition, rather than letting the terminal capital-labor ratio
be exogenously given or prescribed as in Kurz (1965), Samuelson (1965) and Cass
(1966), the maximum sustainable level of terminal path consumption per capita (or
capital-labor ratio) is endogenously determined in the present model.

The rest of the paper is organized as follows. In Section 2, the basic model is con-
structed, and some necessary assumptions and definitions, especially the definitions
of economic maturity and the minimum time needed to economic maturity, are intro-
duced. Section 3 is the major part of the paper, where both Asymptotic Turnpike Theo-
rem and Neighborhood Turnpike Theorem are established. Section 4 proves robustness
of the turnpike theorems established in Section 3, i.e., we assert the existence of a ro-
bust turnpike deduced by the minimum-time needed to economic maturity. There is
a brief concluding section, where we have discussed possible extensions of the basic
framework. All proofs, unless otherwise noted in the text, appear in the Appendix.

2. The environment

Here, and throughout the paper, we consider a one-sector neoclassical model with
stochastic growth. As usual, we employ the following neoclassical production function

Y (t) = F (K(t),L(t)) , (1)

which is a strictly concave function and exhibits constant returns to scale (CRS) with
K(t) denoting the aggregate capital stock and L(t) representing the labor force (or
population size in some cases). Thus, we have the following law of motion of capital
accumulation

dK(t)
dt

= F (K(t),L(t))−δK(t)−C(t), (2)

where δ , an exogenously given constant, denotes the depreciation rate and C(t) stands
for aggregate consumption in period t.

Suppose that (B(t), 0 ≤ t ≤ T ) stands for a standard Brownian motion defined on
the following filtered probability space (Ω,F , {Ft}0≤t≤T ,P) with F≡ {Ft}0≤t≤T the
P-augmented filtration generated by (B(t), 0 ≤ t ≤ T ) with F ≡ FT for ∀T > 0, i.e.,
the underlying stochastic basis satisfies the well-known usual conditions. Then, based
upon the given probability space and following Merton (1975) and Dai (2014a), we
define the following law of motion for labor force

dL(t) = nL(t)dt +σL(t)dB(t) (3)
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subject to B(0) = 0 almost surely (hereafter a.s.)-P and σ ∈ ℜ0 ≡ ℜ−{0}, a constant.
Thus, combining (2) with (3) and applying Itô’s rule lead us to

dk(t) =

s(k(t)) f (k(t))−


δ +n−σ

2k(t)


dt −σk(t)dB(t) (4)

with k(0) ≡ k0 > 0, k(t) ≡ K(t)


L(t), f (k(t)) ≡ F (K(t),L(t))


L(t) = F


K(t)
L(t) ,1


,

s(k(t))≡ 1− c(t)
f (k(t)) and c(t)≡C(t)


L(t) denoting the initial capital-labor ratio, capital-

labor ratio, per capita output, savings per unit output and per capita consumption, re-
spectively, at time t. Specifically, for the SDE of capital-labor ratio given by (4), Chang
and Malliaris (1987) proved the following theorem.

Theorem 1. If the production function f is strictly concave, continuously differentiable
on [0,∞) , f (0) = 0, and limk(t)→∞ f ′ (k(t))≡ limk(t)→∞

d f (k(t))
dk(t) = 0, then there exists a

unique solution to (4).

Thus, we directly give the following assumption for simplicity.

Assumption 1. The assumptions or conditions given by Theorem 1 are fulfilled through-
out the current paper.

2.1 Economic Maturity

It is assumed that the economy consists of L(t) identical individuals in period t, each of
whom possesses perfect foresight. We thus suppose that there is a representative agent
with the following objective function:

Et0

 τ
t0

e−ρ(t−t0)U1 ((1− s(k(t))) f (k(t)))dt + e−ρ(τ−t0)U2 ( f (k(τ)))

 , (5)

where Et0 denotes the expectation operator depending on Ft0 with t0 ≥ 0, 0 < ρ < 1
represents the discount factor, τ ≡ τ(ω) ∈ T ≡{F-stopping times} for ω ∈ Ω, and
U1(·), U2(·) are strictly increasing, strictly concave instantaneous utility functions of
per capita consumption and per capita output, respectively, with the well-known Inada
conditions satisfied.

It is easily seen that the criterion defined by (5) is widely used in existing literature,
including the macroeconomic studies. Nevertheless, τ ≡ τ(ω) is usually pre-specified
and deterministic, e.g., τ(ω)≡ T > 0 for all ω ∈Ω and any exogenously given constant
0 < T ≤ ∞. Noting that τ truly implies interesting and important economic implica-
tions in accordance to Kurz (1965) and Dai (2012), we will extend Kurz’s work by
introducing nature or social planner into the present macroeconomic model. The na-
ture will actually choose an admissible value τ∗ ≡ τ∗(ω) so that (5) is maximized.
Formally, we give the following definition.

Definition 1. The stochastic dynamic game Γ between the nature and the representa-
tive agent proceeds according to the following timing structure:
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Stage 1: Taking the remaining parameters as given, the nature will determine
an optimal stopping time τ∗(ω) ∈ T such that the criterion in (5) is maximized
subject to constraint (4) (i.e., this is essentially an optimal stopping problem).

Stage 2: Given the knowledge of the game structure as well as τ = τ∗(ω) ∈
T , the representative agent chooses an optimal savings strategy s∗ (k(t),τ∗− t0)
such that the criterion defined in (5) is maximized subject to constraint (4).

Then, following the classical Backward Induction Principle, we formulate:

Problem 1. The representative agent will find a savings policy s∗ (k(t),τ − t0) so as to

maxEt0

 τ
t0

e−ρ(t−t0)U1 ((1− s(k(t))) f (k(t)))dt + e−ρ(τ−t0)U2 ( f (k(τ)))


subject to the SDE of capital-labor ratio in (4), for ∀τ ∈ T .

If Problem 1, the modified Ramsey (1928) problem, has a solution, we obtain the
optimal path of capital-labor ratio as follows:

dk(t) =

s∗ (k(t),τ − t0) f (k(t))−


δ +n−σ

2k(t)


dt −σk(t)dB(t). (6)

And we put:

Problem 2. The optimization problem facing the nature is to find a stopping rule
τ∗(ω) ∈ T so as to

supEt0

 τ
t0

e−ρ(t−t0)U1 ((1− s∗ (k(t),τ − t0)) f (k(t)))dt + e−ρ(τ−t0)U2 ( f (k(τ)))


subject to the SDE of capital-labor ratio given by (6).

Remark 1.

(i) It is especially worth emphasizing that Problem 2 can also be modified by focus-
ing entirely upon the final state as that of Radner (1961) and Dai (2012). That
is, the criterion of preference facing the nature is given by

Et0


e−ρ(τ−t0)U2 ( f (k(τ)))


,

which, in general, will result in a new turnpike. Nevertheless, we argue that
similar turnpike theorems can be established for the new turnpike.

(ii) In particular, one may notice certain similarity of the present approach to the
literature studying endogenous lifetime or endogenous longevity in growth mo-
dels (see Chakraborty 2004; de la Croix and Ponthiere 2010, and among others),
obvious differences, nevertheless, exist between the both, especially when re-
ferring to economic intuition and implications behind formal models. Existing
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studies focus on OLG models and health-investment behaviors while the cur-
rent exploration emphasizes issues of macroeconomic development, namely, the
characterization of economic maturity for underdeveloped economies and the
corresponding characteristics of their optimal capital-accumulation paths.

(iii) The maximum sustainable capital-labor ratio corresponding to the state of eco-
nomic maturity as well as the minimum-time needed to economic maturity is
endogenously determined by using stochastic optimal stopping theory that is
widely applied in mathematical finance. However, in Kurz’s (1965) study, the
target or the maximum sustainable level of terminal path capital-labor ratio is ex-
ogenously specified, and the corresponding minimum time problem is expressed
as: For any given initial capital-labor ratio, to chose strategies so that the pre-
scribed target can be reached as soon as possible. As a result, the major contribu-
tion of the present approach can be expressed as follows: first, we endogenously
determine the terminal path of capital-labor ratio as well as the minimum time
needed to reach economic maturity; second, we maximize the welfare of the
representative agent in solving the minimum-time objective problem.

(iv) It follows from the specification of Problem 2 that we focus on the episode before
reaching economic maturity as concentrated in Kurz (1965), Samuelson (1965)
and Cass (1966). Put it differently, the present framework is suitable for the
studies concerning underdeveloped economies.

Thus, if Problem 2 has a solution, we get the optimal stopping time τ∗(ω) ∈ T ,
which actually defines the minimum time needed toward economic maturity. Also,
(τ∗(ω),s∗ (k(t),τ∗(ω)− t0)) forms the sub-game perfect Nash equilibrium (SPNE) of
the stochastic dynamic game Γ given by Definition 1.
Remark 2. It is especially worth mentioning that we define the standard of economic
maturity from the perspective of economic welfare, which is of course reasonable in
the current model economy. Notice that the state of economic maturity for any given
economy should imply a peak state that yields the highest level of economic welfare,1

we argue that the minimum time needed to economic maturity is well-defined.
Finally, noting that we do not focus on the endogenous savings behavior of the

representative agent and also the explicit formula of the minimum time needed to eco-
nomic maturity in the current paper, we can directly put:

Assumption 2. Let Problem 1 and Problem 2 be solvable, i.e., we can find at least one
optimal savings policy s∗ (k(t),τ∗(ω)− t0) and at least one minimum time τ∗(ω) ∈ T
needed toward economic maturity. Moreover, let there exist a constant capital-labor
ratio 0 < k∗ < ∞ such that the optimal stopping rule is characterized by τ∗(ω) ≡
inf{t ≥ 0;k(t) = k∗}< ∞ a.s.-P.
1 We, of course, admit that there are many other standards that can characterize the state of economic
maturity. Nevertheless, we argue that economic welfare will always be the appropriate choice when noting
that the major goal of economic growth and economic development is to improve the economic welfare of
the people for any modern economies. And in order to make things easier and tractable, we focus on the
highest level of economic welfare, and this assumption is, however, without any loss of generality in the
underlying economy.
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Remark 3.

(i) In fact, Problem 1 can be solved by employing stochastic dynamic programming,
and Merton (1975) proved the existence of optimal savings policy in a quite
similar case. On the other hand, Problem 2 can also be solved under certain
conditions, and one can refer to Karatzas and Wang (2001), Jeanblanc et al.
(2004), and Øksendal and Sulem (2005) for more details. The major goal of
the present exploration is to confirm that k∗ defines a robust turnpike, which is
certainly deduced by economic maturity based on the above constructions.

(ii) Assumption 2 ensures the existence of turnpikes from the viewpoint of mathe-
matical techniques. We, however, emphasize that the existence can be taken for
granted in reality. In other words, for any developed economy, it experienced
the state of economic maturity in history. Thus, the existence of the state of
economic maturity is relatively easily ensured in reality.

3. Turnpike theorems

Now, based on Assumption 2, we get

dk(t) =

s∗ (k(t),τ∗− t0) f (k(t))−


δ +n−σ

2k(t)


dt −σk(t)dB(t)

≡ ϕ (k(t))dt +ψ (k(t))dB(t) (7)

subject to k(0)≡ k0 > 0, a deterministic constant. And also,

τ
∗(ω)≡ inf{t ≥ 0;k(t) = k∗}< ∞ a.s.-P (8)

for some endogenously given constant 0 < k∗ < ∞. We are to show that k∗ exhibits
turnpike property providing the above assumptions.

Theorem 2 (Asymptotic Turnpike Theorem).2 Provided the SDE of capital-labor
ratio defined in (7) and the minimum time needed to economic maturity given by (8),
then we always get that k(t) converges in L1(P) and the corresponding limit belongs
to L1(P). In particular, if we have ϕ (k(t)) = 0 a.s.-P, i.e., s∗ (k(t),τ∗− t0) f (k(t)) =
(δ +n−σ2)k(t) a.s.-P, it uniformly converges to k∗ a.s.-P, or equivalently,

lim
t ′→∞

P


∞

t=t ′
[|k(t)− k∗| ≥ ε]


= 0, ∀ε > 0.

Proof. See Appendix A.

Remark 4. By applying supermartingale property to confirm the corresponding con-
vergence, Joshi (1997) studies the turnpike theory in a stochastic aggregate growth

2 This proof brings the idea from Dai (2012). Our turnpike theorems satisfy the classical characteristics,
i.e., any optimal paths stay within a small neighborhood of the turnpike almost all the time and the turnpike
is independent of initial conditions (see McKenzie 1976; Yano 1984; Dai 2014c).
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model in which stochastic environments as independent variables are directly and ex-
ogenously incorporated into the production function. However, one may easily tell
the difference between Joshi’s method and our proof. Moreover, it is argued that the
essential requirement in Theorem 2 can be easily met thanks to the volatility term σ .

However, if ϕ (k(t)) 6= 0, we can define a new process θ(t) by

ϕ (k(t)) = θ(t)ψ (k(t))

for almost all (hereafter a.a.) (t,ω) ∈ [0,T ]×Ω. Then we can put

Z(t)≡ exp

−
t

0

θ(s)dB(s)− 1
2

t
0

θ
2(s)ds

 .

Define a new measure Q on FT by

dQ(ω) = Z(T )dP(ω),

i.e., Z(T ) is the Radon-Nikodym derivative. In what follows, we first introduce the
following assumption:

Assumption 3. At least one of the following two conditions holds:

(i) E [Z(T )] = 1.

(ii) The following Novikov Condition holds, i.e.,

E

exp

1
2

T
0

θ
2(t)dt

< ∞ for 0 ≤ T < ∞.

Thus, based upon Assumption 3 and according to the Girsanov Theorem, we get
that Q is a probability measure on FT , Q is equivalent to P and k(t) is a martingale
w. r. t. Q on the stochastic basis (Ω,F , F ,Q). Using Girsanov Theorem again, we
claim that the process

B̂(t)≡
t

0

θ(s)ds+B(t), ∀t ∈ [0,T ]

is a Brownian motion w. r. t. Q with B̂(0) = B(0) = 0 a.s., and expressed in terms of
B̂(t) we can get

dk(t) = ψ (k(t))dB̂(t) (9)

subject to k(0)≡ k0 > 0, a deterministic constant.
Next, based on (9) and similar to (8), we, by slightly modifying Assumption 2,

have
τ̂
∗(ω)≡ inf


t ≥ 0;k(t) = k̂∗


< ∞ a.s.-Q (10)
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for some endogenously determined 0 < k̂∗ < ∞.
Here, the operation of changing probability measure is mainly technically moti-

vated. These turnpike properties rely on a martingale feature of the equilibrium path
of capital accumulation. Before changing the probability measure, we just focus atten-
tion on a special case where the equilibrium path of capital accumulation is already a
martingale process. If we relax the assumption used in such a special case, we then
need to change the probability measure to obtain a martingale process by making use
of the well-known Girsanov Theorem. Therefore, employing similar proof as that of
Theorem 2, we can establish:

Theorem 3 (Asymptotic Turnpike Theorem). Provided the SDE of capital-labor
ratio defined in (9) and the minimum time needed to economic maturity given by (10),
then we always get that k(t) converges in L1(Q) and the corresponding limit belongs
to L1(Q). Specifically, it uniformly converges to k̂∗ a.s.-Q, or equivalently,

lim
t ′→∞

Q


∞

t=t ′

k(t)− k̂∗
≥ ε


= 0, ∀ε > 0.

Now, we proceed to prove the neighborhood turnpike theorem. We do this by first
giving the following assumption.

Assumption 4. Let k(t) ∈ ℜ++ ≡ [0,∞], which is the one point compactification of ℜ

at infinity with the induced topology, ∀t ≥ 0. Also, there exists a unique invariant Borel
probability measure π defined on ℜ++ such that π [bd (ℜ++)]≡ π [{0}


{+∞}] = 0,

where bd (ℜ++) denotes the boundary of ℜ++. We particularly denote by π̂ the Borel
probability measure corresponding to the SDE defined in (9).

Remark 5. Mirman (1972) and Dai (2014c) construct a one-sector growth model with
uncertain technology, i.e., random variables, which are assumed to be independent and
identically distributed, are directly introduced into the neoclassical production func-
tion, thereby resulting in a discrete-time Markov process of capital stock. Specifi-
cally, Mirman defines Borel probability measure on the Borel sets of non-negative real
line by using the corresponding probability transition function of the Markov process.
Moreover, Theorem 2.1 of Mirman confirms that there exists a stationary probability
measure that has no mass at either zero or infinity. In contrast, the present paper con-
structs continuous time Markov process of capital-labor ratio. Nonetheless, one can
still prove that there exists a unique invariant Borel probability measure satisfying the
requirements of Assumption 4 under relatively weak conditions. For more details, one
may refer to Theorem 2.1 of Imhof (2005), Theorem 3.1 of Benaı̈m et al. (2008) and
Theorem 5 of Schreiber et al (2011). The present paper omits the corresponding proof
to economize on the space.

As a consequence, the following theorem is derived.

Theorem 4 (Neighborhood Turnpike Theorem).3 Provided assumptions of Theo-
rem 2 are fulfilled and also Assumption 4 holds, we can get that there exists a constant
3 This proof brings the method employed by Imhof (2005) and Dai (2012).
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Σ > 0 such that for ∀α > 0 with α > Σ,

(i) E

τBα (k∗)(ω)


≤ dist (k0,k∗)

α −Σ
,

(ii) π

Bα(k∗)


≥ 1− Σ

α
≡ 1− ε,

where

Bα(k∗) ≡ {k(t) ∈ ℜ++; |k(t)− k∗|< α, t ≥ 0} ,
τBα (k∗)(ω) ≡ inf


t ≥ 0;k(t) ∈ Bα(k∗)≡ clBα(k∗)


, and

dist (k0,k∗) ≡ k∗ log(k∗/k0)

for (k∗ >)k0 ≡ k(0)> 0.

Proof. See Appendix B.

In particular, this result just considers the case with k∗ > k0. Definitely, we can
obtain similar result for the case with k∗ < k0 through redefining the distance function
as dist (k0,k∗)≡ k0 log(k0/k∗).

Similarly, we derive the following theorem.

Theorem 5 (Neighborhood Turnpike Theorem). Provided assumptions of Theo-
rem 3 are fulfilled and also Assumption 4 holds, we can get that there exists a constant
Σ̂ > 0 such that for ∀α̂ > 0 with α̂ > Σ̂,

(i) EQ

τ̂Bα̂ (k̂∗)

(ω)

≤

dist

k0, k̂∗


α̂ − Σ̂

,

(ii) π̂

Bα̂(k̂∗)


≥ 1− Σ̂

α̂
≡ 1− ε̂,

where

Bα̂


k̂∗


≡


k(t) ∈ ℜ++;
k(t)− k̂∗

< α̂, t ≥ 0

,

τ̂Bα̂ (k̂∗)
(ω) ≡ inf


t ≥ 0;k(t) ∈ Bα̂(k̂∗)≡ clBα̂


k̂∗


, and

dist

k0, k̂∗


≡ k̂∗ log


k̂∗/k0


for (k̂∗ >)k0 ≡ k(0)> 0.

Remark 6. Theorem 4 shows that the Borel probability measure π will place nearly
all mass close to the turnpike k∗. Similarly, Theorem 5 reveals that the corresponding
probability distribution π̂ will place almost all mass close to the new turnpike k̂∗. In-
deed, Theorems 4 and 5 demonstrate the turnpike property from both time dimension
and space dimension, i.e., in the sense of Markov time as well as invariant probability
distribution, which of course will provide us with a much more complete characteriza-
tion of the neighborhood turnpike property when compared with existing studies (see
McKenzie 1976; Bewley 1982; Yano 1984; Dai 2014c).
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What’s the potential application of our theoretical result? It seems hard to see
any direct application of our abstract assertion, we, however, will offer the following
implication to reveal the potential practical-value of our theoretical argument. The
finding in Theorem 5 leads us to a much more comprehensive philosophy when we are
motivated to comparatively analyze capital accumulation within different economic
systems. For example, for two economies with different levels of economic maturity,
e.g., the first one is relatively higher than the second one. Hence, we usually claim
that the first one will economically dominate the second one. Nonetheless, our result
argues that this conclusion is really hasty and hence may not be comprehensive, and
it even does not make any sense. Why? When we attempt to evaluate the potential
of capital accumulation for different economies, we should simultaneously consider
efficiency from the time aspect, e.g., the first economy may take 15 years to reach its
neighborhood efficiency, whereas the second one only takes 5 years. In other words,
Theorem 5 confirms that both the height of our goal and the speed leading toward our
goal are equivalently crucial from the perspective of evaluating economic efficiency.

Not only that, we are encouraged to add the following comment for Theorem 5.
It is worthwhile indicating that there exists an intriguing relation between our major
result and the concept of flexibility. In fact, we understand the concept of flexibility
under the current background like this: It captures the dynamic trade-off between eva-
luation accuracy and sustainable economic incentive. To be exact, the selected scope
or radius of the given neighborhood completely determined by the exogenous para-
meter α̂ reflects the underlying flexibility of the evaluation mechanism proposed by
Theorem 5. In particular, if we are to pursue a relatively high goal of economic matu-
rity, then we can properly extend the given neighborhood; symmetrically, if the goal is
relatively low, then we can proportionally narrow the neighborhood. Therefore, we are
kept in a subtle balance between the evaluation accuracy and the sustainable economic
incentive. As is broadly recognized, accuracy is important because it reveals useful in-
formation of the real macroeconomic process and meanwhile avoids any unnecessary
overconfidence, while economic incentive is sustainable only when there are external
encouragements from real accomplishments. In sum, policy makers should carefully
sustain such a balance. It, therefore, can be regarded as an insightful lesson policy
makers might have learned from our theoretical model.

4. Robustness

Before establishing the formal assertion, we first give the following definition.

Definition 2 (Robust Turnpike). For a turnpike of any given equilibrium path of ca-
pital accumulation, we call it a robust turnpike if any perturbed equilibrium path of
capital accumulation asymptotically converges to it as the perturbation term (or vec-
tor) approaches zero (or a zero vector).

It follows from (7) that

dk(t) = ϕ (k(t))dt +ψ (k(t))dB(t)≡ k(t)ϕ0 (k(t))dt + k(t)ψ0 (k(t))dB(t). (11)
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Now, we introduce the following SDE:

dk̃(t) = ϕ̃

k̃(t)


dt + ψ̃

k̃(t)


dB(t)≡ k̃(t)ϕ̃0

k̃(t)


dt + k̃(t)ψ̃0

k̃(t)


dB(t), (12)

where we have provided the following assumption.

Assumption 5. For any ξ > 0,

supk,k̃>0

ϕ0(k)− ϕ̃0(k̃)
∨ supk,k̃>0

ψ0(k)− ψ̃0(k̃)
≤ ξ .

That is to say, (12) defines the ξ - perturbation of (11).

Moreover, we need the following assumption.

Assumption 6. There exist constants φ , φ̃ and φ0 < ∞ such that

|ϕ(k)k|∨ |ψ(k)|2 ≤ φ |k|2 ,
ϕ̃(k̃)k̃∨ ψ̃(k̃)

2 ≤ φ̃
k̃2 ,

and supk>0 |ϕ0(k))|2 ∨ supk>0 |ψ0(k)|2 ≤ φ0 for ∀k > 0 and ∀k̃ > 0.

Remark 7. One can easily find that Assumption 6 is truly reasonable thanks to As-
sumption 1. Assumption 6 is indeed without any loss of generality and is just for the
sake of convenience in the following proofs.

Lemma 1. Provided the above assumptions hold, there exist constants e(k0, p,T )< ∞

and ẽ(k0, p,T )< ∞ such that

(i) E

sup0≤t≤T |k(t)|

p≤ e(k0, p,T ), and

(ii) E

sup0≤t≤T

k̃(t)p≤ ẽ(k0, p,T )

for k(0) = k̃(0) = k0 > 0,∀T > 0,∀p ∈ N (the set of natural numbers), and p ≥ 2.

Proof. See Appendix C.

Specifically, even if we do not rely on the above assumptions, we can still get the
following result:

Lemma 2. If both k(t) and k̃(t) are martingales w. r. t. P, then there exist constants
η < ∞ and η̃ < ∞ such that

(i) E


lim
T→∞

sup0≤t≤T |k(t)|
2

< η , and

(ii) E


lim
T→∞

sup0≤t≤T
k̃(t)2< η̃

for k(0) = k̃(0) = k0 > 0.

Proof. See Appendix D.

Now, we can derive the following proposition.
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Proposition 1. Provided the above assumptions hold and suppose that k(0) = k̃(0) =
k0 > 0, then we get

E


lim
T→∞

sup0≤t≤T
k(t)− k̃(t)

2→ 0

as ξ → 0.

Proof. See Appendix E.

Remark 8. It should be pointed out that in the proof of Proposition 1 we have implicitly
used the following assumptions, namely, the speed for ξ to approach zero is much
faster than the speed for time T to approach infinity and also 0×∞ ≡ 0. Moreover, we
can get the same conclusion by taking the limit as ξ → 0 first and then taking the limit
along T → ∞.

Accordingly, the following theorem is established.

Theorem 6 (Robust Turnpike). Provided assumptions of Theorems 2 and 4 are ful-
filled, k∗ is a robust turnpike.

Proof. To prove the robustness, one just needs to combine Theorem 2 with Proposi-
tion 1 (or combine Theorem 4 with Proposition 1) and also use the following fact:k̃(t)− k∗

2 = k̃(t)− k(t)+ k(t)− k∗
2 ≤ 2

k̃(t)− k(t)
2 + |k(t)− k∗|2


.

Thus, we leave the details to the interested reader.

Similarly, one can also arrive at the following result.

Theorem 7 (Robust Turnpike). Provided assumptions of Theorems 3 and 5 are ful-
filled, k̂∗ is a robust turnpike.

Remark 9. Theorems 6 and 7 have confirmed the asymptotic stability of turnpikes k∗

and k̂∗, respectively. To summarize, by noticing that our theorems show that the opti-
mal path of capital accumulation will robustly converge to the corresponding turnpike
in the sense of uniform topology, we argue that the current study indeed extends exist-
ing turnpike theorems (see Scheinkman 1976; McKenzie 1983; Yano 1998; Dai 2014c)
to much stronger cases. This would be regarded as one contribution of the present pa-
per.

5. Concluding remarks

In the current exploration, we are encouraged to study the economic maturity of a
one-sector neoclassical model with stochastic growth. To the best of our knowledge,
we, for the first time, provide a relatively complete characterization of the minimum
time needed to economic maturity for any underdeveloped economy and further show
that the corresponding capital-labor ratio exhibits both asymptotic turnpike property
and neighborhood turnpike property under reasonable conditions. In other words, the
optimal path of capital accumulation (or the equilibrium path of capital accumulation)
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will uniformly and robustly converge to the turnpike capital-labor ratio or will spend
almost all the time staying in any given neighborhood of the turnpike capital-labor ratio
under weak conditions and in a persistently non-stationary environment.

Noting that we assume very general forms of preference for the representative
agent and production technology for the firm, one can apply the present framework
to study different macroeconomic models with stochastic economic growth. Indeed,
the present basic model can be naturally extended to other cases, including multi-sector
models, heterogeneous-agent models or dynamic general equilibrium models (e.g., Be-
wley 1982; Yano 1984, and among others). Finally, as an interesting conjecture, the
present framework can be extended to include multiple priors via applying the theory
developed by Riedel (2009).

Acknowledgement Helpful comments from two anonymous referees are gratefully
acknowledged.
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Appendix

A. Proof of Theorem 2

Put ϕ (k(t)) = 0 in (7), then we find that k(t) will be a martingale w. r. t. P. Thus, by
using Doob’s Martingale Inequality, we obtain

P

sup0≤t≤T |k(t)| ≥ λ


≤ 1

λ
E [|k(T )|] = k0

λ
for ∀λ > 0, ∀T > 0. (A1)

Without loss of generality, we put λ = 2m for m ∈ N, then

P

sup0≤t≤T |k(t)| ≥ 2m≤ 1

2m k0 for ∀m ∈ N and ∀T > 0.

Using the well-known Borel-Cantelli Lemma, we arrive at

P

sup0≤t≤T |k(t)| ≥ 2mi.m.m


= 0 for ∀T > 0,

in which i.m.m represents “infinitely many m.” So, for a.a. (almost all) ω ∈ Ω, there
exists m(ω) ∈ N such that

sup0≤t≤T |k(t)|< 2m a.s. (almost surely) for m ≥ m(ω) and ∀T > 0,

hence,
lim

T→∞
sup0≤t≤T |k(t)| ≤ 2m a.s. for m ≥ m(ω).

Consequently, k(t) = k(t,ω) is uniformly bounded for t ∈ [0,T ], ∀T > 0 and a.a.
ω ∈ Ω. Thus, it is ensured that k(t) = k(t,ω) converges a.s.-P and the limit belongs
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to space L1(P) thanks to Doob’s Martingale Convergence Theorem. Moreover, by
applying Kolmogorov’s (or Chebyshev’s) Inequality, we get

P

sup0≤t≤T |k(t)| ≥ λ


≤ 1

λ 2 var [|k(T )|] for ∀0 < λ < ∞ and ∀T > 0.

It follows from (A1) that

1
λ 2 var [|k(T )|]≤ k0

λ
⇔ var [|k(T )|]≤ λk0 for ∀T > 0. (A2)

Noting that var [|k(T )|] = E

|k(T )|2


− (k0)

2 for ∀T > 0, we get by (A2)

E

|k(T )|2


≤ (λ + k0)k0 < ∞ for ∀0 < λ < ∞ and ∀T > 0,

which yields
supT≥0E


|k(T )|2


≤ (λ + k0)k0 < ∞.

Hence, by applying Doob’s Martingale Convergence Theorem again, k(t) = k(t,ω)
converges in L1(P).

Furthermore, it is easily seen that k(t)− k∗ is also a martingale w. r. t. P. Thus,
applying the Doob’s Martingale Inequality again implies that

P

sup0≤t≤T |k(t)− k∗| ≥ ε


≤ 1

ε
E [|k(T )− k∗|] for ∀ε > 0 and ∀T > 0. (A3)

Provided that τ∗(ω) ≡ inf{t ≥ 0;k(t) = k∗} < ∞ a.s.-P given by (8), we see that
there exists β > 0 such that the martingale inequality in (A3) still holds for ∀τ(ω) ∈
Bβ (τ

∗(ω)) ≡ {τ(ω) ∈ T ; |τ(ω)− τ∗(ω)| ≤ β} by using Doob’s Optional Sampling
Theorem. Then, we get that k(τ)− k∗ is uniformly bounded on the compact set
Bβ (τ

∗(ω)) by applying Heine-Borel Theorem and Weierstrass Theorem. Therefore,
we, without any loss of generality, set up β = 2−m for ∀m ∈ N. Employing the con-
tinuity of martingale w. r. t. time t for any given ω ∈ Ω and ∀τm ∈ Bβ (τ

∗(ω)) ≡
B2−m (τ∗(ω)) and using the Lebesgue Dominated Convergence Theorem, we get

limsupm→∞P

sup0≤t≤τm

|k(t)− k∗| ≥ ε

≤ 1

ε
limsupm→∞E [|k(τm)− k∗|] = 0

almost surely. And this implies that

limsupm→∞P

sup0≤t≤τm

|k(t)− k∗|< ε

≥ 1 a.s.-P.

Letting ε = 2−m0 for ∀m0 ∈ N, we get

limsupm→∞P

sup0≤t≤τm

|k(t)− k∗|< 2−m0

= 1 a.s.-P for ∀m0 ∈ N.

64 Czech Economic Review, vol. 9, no. 1



Robust Turnpikes Deduced by the Minimum-Time Needed toward Economic Maturity

It follows from Fatou’s Lemma that

P


sup0≤t≤τ∗(ω) |k(t)− k∗|< 2−m0

= 1 a.s.-P for ∀m0 ∈ N.

Then, applying Borel-Cantelli Lemma again implies that

P


sup0≤t≤τ∗(ω) |k(t)− k∗|< 2−m0 i.m.m0


= 1,

where i.m.m0 stands for “infinitely many m0.” So for a.a. ω ∈ Ω, there exists m0(ω) ∈
N such that

sup0≤t≤τ∗(ω) |k(t)− k∗|< 2−m0 a.s. for ∀m0 ≥ m0(ω).

That is,
limsupm0→∞sup0≤t≤τ∗(ω) |k(t)− k∗| ≤ 0 a.s.-P,

which yields
limsupτ∗(ω)→∞sup0≤t≤τ∗(ω) |k(t)− k∗| ≤ 0 a.s.-P.

That is to say,

P


∞

m=1

∞
t ′=0

∞
t=t ′


|k(t)− k∗| ≥ 1

m


= 0.

Equivalently, for ∀m ∈ N, we arrive at

P


∞

t ′=0

∞
t=t ′


|k(t)− k∗| ≥ 1

m


= 0,

i.e., for ∀ε > 0, we have

lim
t ′→∞

P


∞

t=t ′
[|k(t)− k∗| ≥ ε]


= 0,

which gives the desired assertion. �

B. Proof of Theorem 4

Given the SDE defined by (7), we can define the following characteristic operator of
k(t):

Ag(k0) = ϕ (k0)
∂g
∂k0

(k0)+
1
2

ψ
2 (k0)

∂ 2g
∂ (k0)2 (k0)
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for any k0 ≡ k(0) > 0. We now define Kullback-Leibler type distance (see Bomze
1991; Imhof 2005) between k0 and k∗ as follows:

g(k0)≡ dist (k0,k∗)≡ k∗ log


k∗

k0


≥ 0.

Then we get

Ag(k0) =


−ϕ (k0)+

1
2k0

ψ
2 (k0)


k∗

k0
.

By Theorem 2, we find that there exists T0 < ∞ such that

sup0≤t≤T |k(t)− k∗|< µ for ∀µ > 0 and ∀T ≥ T0.

Thus, we have

Ag(k0)≤

−ϕ (k0)+

1
2k0

ψ
2 (k0)


k∗

k0
+µ −|k(t)− k∗| ≡ Σ−|k(t)− k∗| . (B1)

Define some new notations:

Bα(k∗)≡ {k(t) ∈ ℜ++; |k(t)− k∗|< α, t ≥ 0} ,

τ̃(ω)≡ τBα (k∗)(ω)≡ inf


t ≥ 0;k(t) ∈ Bα(k∗)≡ clBα(k∗)

,

where Bα(k∗) denotes the closure of Bα(k∗). Suppose α > Σ for every k(t) /∈ Bα(k∗),
i.e., k(t) ∈ BC

α(k
∗), we then get

Ag(k0)≤−α +Σ

by using (B1). Thus, by making use of Dynkin’s formula,

0 ≤ E [g(k (t ∧ τ̃))] = g(k0)+E

 t∧τ̃
0

Ag(k(s))ds

≤ g(k0)+(Σ−α)E [t ∧ τ̃(ω)] .

Since t ∧ τ̃ ↑ τ̃ as t → ∞, applying Lebesgue Monotone Convergence Theorem results
in

0 ≤ g(k0)+(Σ−α)E [τ̃(ω)] ,

which produces

E

τBα (k∗)(ω)


= E [τ̃(ω)]≤ g(k0)

α −Σ
=

dist (k0,k∗)
α −Σ

,

as required in (i). Moreover, for some constant W > g(k0), set up

τW = τW (ω)≡ inf{t ≥ 0;g(k(t)) =W} .
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Thus, by making use of Dynkin’s formula and inequality (B1),

0 ≤ E [g(k (t ∧ τW ))] = g(k0)+E

 t∧τW
0

Ag(k(s))ds


≤ g(k0)−E

 t∧τW
0

|k(s)− k∗|ds

+ΣE [t ∧ τW (ω)] .

If W → ∞, we get t ∧ τW (ω)→ t. By applying Lebesgue Bounded Convergence The-
orem and Levi Lemma, we are led to

0 ≤ g(k0)−E

 t
0

|k(s)− k∗|ds

+Σt,

which yields

E

1
t

t
0

|k(s)− k∗|ds

≤ g(k0)

t
+Σ.

Thus, we have

limsupt→∞E

1
t

t
0

|k(s)− k∗|ds

≤ Σ. (B2)

If we let χ
BC

α (k∗)
(k(t)) denote the indicator function of set BC

α(k
∗), then by (B2) and

Assumption 4, we arrive at

π


BC

α(k
∗)


= limsupt→∞E

1
t

t
0

χ
BC

α (k∗)
(k(s))ds


≤ limsupt→∞E

1
t

t
0

|k(s)− k∗|
α

ds

 ≤ Σ

α
,

which implies that

π

Bα(k∗)


≥ 1− Σ

α
≡ 1− ε,

which gives the desired assertion in (ii). �
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C. Proof of Lemma 1

Applying Itô’s rule to (11) produces

|k(t)|2 = |k0|2 +2
t

0

ϕ (k(s))k(s)ds+
t

0

|ψ (k(s))|2 ds+2
t

0

ψ (k(s))k(s)dB(s).

By using Assumption 6 we get that for t1 ∈ [0,T ] and some constant e ≡ e(p,T ) < ∞

(which may be different from line to line throughout this proof),

sup0≤t≤t1 |k(t)|
p ≤ e

|k0|p +

 t1
0

φ |k(s)|2 ds


p
2

+ sup0≤t≤t1


t

0

k(s)ψ [k(s)]dB(s)


p
2
 .

It follows from Cauchy-Schwarz Inequality (Dai 2014b) that

sup0≤t≤t1 |k(t)|
p ≤ e

|k0|p +
t1

0

|k(s)|p ds+ sup0≤t≤t1


t

0

k(s)ψ [k(s)]dB(s)


p
2
 .

Taking expectations on both sides and applying the Burkholder-Davis-Gundy Inequal-
ity (see Karatzas and Shreve 1991, p. 166) show that

E

sup0≤t≤t1 |k(t)|

p≤ e

|k0|p +
t1

0

E [|k(s)|p]ds+E

 t1
0

|k(s)|2 |ψ (k(s))|2 ds


p
4
 .

(C1)

Now, using the Young Inequality (see Higham et al. 2003), Assumption 6, and
Rogers-Hölder Inequality (Dai 2014b) reveals that

E

 t1
0

|k(s)|2 |ψ (k(s))|2 ds


p
4

≤ E

sup0≤t≤t1 |k(t)|
p
2

 t1
0

|ψ (k(s))|2 ds


p
4


≤ 1
2e

E

sup0≤t≤t1 |k(t)|

p+ e
2
E

 t1
0

|ψ (k(s))|2 ds


p
2

≤ 1
2e

E

sup0≤t≤t1 |k(t)|

p+ e
2

φ
p
2 E

 t1
0

|k(s)|2 ds


p
2
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≤ 1
2e

E

sup0≤t≤t1 |k(t)|

p+ e
2

φ
p
2 T

p−2
2 E

 t1
0

|k(s)|p ds

 .
Substituting this into (C1) yields

E

sup0≤t≤T |k(t)|

p≤ e

|k0|p +
T

0

E [|k(t)|p]dt

 .

Thus, by applying the following fact (see Higham et al. 2003):

E [|k(t)|p]≤ e(1+ |k0|p) ,

we arrive at
E

sup0≤t≤T |k(t)|

p≤ e(k0, p,T )< ∞,

which gives the desired result in (i). Noting that the proof of (ii) is quite similar to that
of (i), we omit it. And this completes the whole proof. �

D. Proof of Lemma 2

By using Doob’s Martingale Inequality, we obtain

P

sup0≤t≤T |k(t)| ≥ λ


≤ 1

λ
E [|k(T )|] = k0

λ
for ∀0 < λ < ∞ and ∀T > 0. (D1)

Similarly, by applying Kolmogorov’s (or Chebyshev’s) Inequality, we get

P

sup0≤t≤T |k(t)| ≥ λ


≤ 1

λ 2 var [|k(T )|] for ∀0 < λ < ∞, ∀T > 0.

It follows from (D1) that

1
λ 2 var [|k(T )|]≤ k0

λ
⇔ var [|k(T )|]≤ λk0 for ∀T > 0. (D2)

Noting that var [|k(T )|] = E

|k(T )|2


− (k0)

2 for ∀T > 0, we get by (D2)

E

|k(T )|2


≤ (λ + k0)k0 < ∞ for ∀0 < λ < ∞ and ∀T > 0, (D3)

which implies that k(t) is a square-integrable martingale. We define:

ζ ≡ |k(t)| , ζ ∗ ≡ ‖k(t)‖
∞
≡ sup0≤s≤t |k(s)| and ‖k(t)‖2 ≡


E

|k(t)|2

 1
2 .

Thus, by applying Doob’s Martingale Inequality and Fubini Theorem, we arrive at
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the following result for some constant N < ∞:

E

|ζ ∗∧N|2


= 2


∞

0
xP(ζ ∗(ω)∧N ≥ x)dx

≤ 2


∞

0


{ζ ∗(ω)∧N≥x}

ζ (ω)dP(ω)dx

= 2


∞

0


Ω

ζ (ω)χ{ζ ∗(ω)∧N≥x}dP(ω)dx

= 2


Ω

ζ (ω)


ζ ∗(ω)∧N

0
dxdP(ω)

= 2


Ω

ζ (ω)(ζ ∗(ω)∧N)dP(ω)

= 2E [ζ (ζ ∗∧N)] .

It follows from Rogers-Hölder Inequality that

‖ζ
∗∧N‖2

2 = E

|ζ ∗∧N|2


≤ 2‖ζ‖2 ‖ζ

∗∧N‖2 ,

which produces
‖ζ

∗∧N‖2 ≤ 2‖ζ‖2 .

Noting that E

|ζ ∗∧N|2


≤ N2 < ∞, and hence applying Lebesgue Dominated Con-

vergence Theorem leads us to

‖ζ
∗‖2 ≤ 2‖ζ‖2 ⇔ ‖ζ

∗‖2
2 ≤ 4‖ζ‖2

2 ,

namely,

E

sup0≤s≤t |k(s)|

2

≤ 4E


|k(t)|2


≤ 4(λ + k0)k0 < ∞ for ∀t ≥ 0

by using the inequality given by (D3). Accordingly, a canonical application of Lebes-
gue Monotone Convergence Theorem (or Levi Lemma) gives the required assertion in
(i). The proof of (ii) is similar to that of (i), we hence omit it. Therefore, the whole
proof is complete. �

E. Proof of Proposition 1

Provided the SDEs defined in (11) and (12), it follows from Lemma 1 that for ∀2 ≤
p < ∞ and ∀T > 0 there exists some constant W < ∞ such that

E

sup0≤t≤T |k(t)|

p∨E

sup0≤t≤T

k̃(t)p≤W, (E1)
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where, by using Assumption 1, we can have

k(t) = k0 +
 t

0
k(s)ϕ0 (k(s))ds+

 t

0
k(s)ψ0 (k(s))dB(s),

k̃(t) = k0 +
 t

0
k̃(s)ϕ̃0


k̃(s)


ds+

 t

0
k̃(s)ψ̃0


k̃(s)


dB(s).

Moreover, we put |k(t)| ∨
k̃(t) ≤ W < ∞ for ∀t ≥ 0; otherwise, we just consider

k(t)∧W and k̃(t)∧W instead of k(t) and k̃(t), respectively, to get the desired result by
sending W to infinity and using Lebesgue Dominated Convergence Theorem. In what
follows, we first define the following stopping times:

τW ≡ inf


t ≥ 0; |k(t)| ≥W

, τ̃W ≡ inf


t ≥ 0;

k̃(t)≥W

, τ

∗
W ≡ τW ∧ τ̃W .

By using the Young Inequality (see Higham et al. 2003) and for any R > 0,

E

sup0≤t≤T

k(t)− k̃(t)
2

= E

sup0≤t≤T

k(t)− k̃(t)
2 χ{τW>T,τ̃W>T}


+E

sup0≤t≤T

k(t)− k̃(t)
2 χ{τW≤T,orτ̃W≤T}


≤ E


sup0≤t≤T

kt ∧ τ∗W


− k̃


t ∧ τ∗W

2 χ
τ∗
W
>T


+ 2R
p E

sup0≤t≤T

k(t)− k̃(t)
p+ 1− 2

p

R
2

p−2
P(τW ≤ T,orτ̃W ≤ T ) .

(E2)

It follows from (E1) that

P(τW ≤ T ) = E


χ{τW≤T}
|k (τW )|p

W p


≤ 1

W pE

sup0≤t≤T |k(t)|

p≤ W
W p .

Similarly, one can get P(τ̃W ≤ T )≤W/W p. So,

P(τW ≤ T,orτ̃W ≤ T )≤ P(τW ≤ T )+P(τ̃W ≤ T )≤ 2W
W p .

Moreover, we obtain by (E1)

E

sup0≤t≤T

k(t)− k̃(t)
p≤ 2p−1E


sup0≤t≤T


|k(t)|p +

k̃(t)p≤ 2pW.

Hence, (E2) becomes

E

sup0≤t≤T

k(t)− k̃(t)
2

≤ E

sup0≤t≤T

kt ∧ τ
∗
W


− k̃

t ∧ τ

∗
W

2+ 2p+1RW
p

+
2(p−2)W

pR
2

p−2 W p
. (E3)
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By making use of Cauchy-Bunyakovsky-Schwarz Inequality, we get

kt ∧ τ
∗
W


− k̃

t ∧ τ

∗
W

2 =

 t∧τ∗
W

0


k(s)ϕ0 (k(s))− k̃(s)ϕ̃0


k̃(s)


ds

+
 t∧τ∗

W

0


k(s)ψ0 (k(s))− k̃(s)ψ̃0


k̃(s)


dB(s)

2
≤ 2


T
 t∧τ∗

W

0

k(s)ϕ0 (k(s))− k̃(s)ϕ̃0

k̃(s)

2ds

+

 t∧τ∗
W

0


k(s)ψ0 (k(s))− k̃(s)ψ̃0


k̃(s)


dB(s)

2


≤ 4


T
 t∧τ∗

W

0

k(s)ϕ0 (k(s))− k̃(s)ϕ0 (k(s))
2ds

+T
 t∧τ∗

W

0

k̃(s)ϕ0 (k(s))− k̃(s)ϕ̃0

k̃(s)

2ds

+

 t∧τ∗
W

0


k(s)ψ0 (k(s))− k̃(s)ψ̃0


k̃(s)


dB(s)

2

.

Taking expectations on both sides and using Itô’s Isometry (Dai, 2014b), we have for
∀τ ≤ T :

E

sup0≤t≤τ

kt ∧ τ
∗
W


− k̃

t ∧ τ

∗
W

2

≤ 4


TE
 t∧τ∗

W

0

k(s)− k̃(s)
2 |ϕ0 (k(s))|2 ds


+TE

 t∧τ∗
W

0

k̃(s)2 ϕ0 (k(s))− ϕ̃0

k̃(s)

2 ds


+E
 t∧τ∗

W

0

k(s)ψ0 (k(s))− k̃(s)ψ̃0

k̃(s)

2 ds


≤ 8


T φ0E
 t∧τ∗

W

0

k(s)− k̃(s)
2 ds


+T ξ

2E
 t∧τ∗

W

0

k̃(s)2 ds


+E
 t∧τ∗

W

0

k(s)ψ0 (k(s))− k̃(s)ψ0 (k(s))
2 ds


+E
 t∧τ∗

W

0

k̃(s)ψ0 (k(s))− k̃(s)ψ̃0

k̃(s)

2 ds


≤ 8


T φ0E
 t∧τ∗

W

0

k(s)− k̃(s)
2 ds


+T ξ

2E
 t∧τ∗

W

0

k̃(s)2 ds


+φ0E
 t∧τ∗

W

0

k(s)− k̃(s)
2 ds


+ξ

2E
 t∧τ∗

W

0

k̃(s)2 ds

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= 8

(T +1)φ0E

 t∧τ∗
W

0

k(s)− k̃(s)
2 ds


+(T +1)ξ 2E

 t∧τ∗
W

0

k̃(s)2 ds


≤ 8

(T +1)φ0

 T

0
E

sup0≤t0≤s

kt0 ∧ τ
∗
W


− k̃

t0 ∧ τ

∗
W

2ds+T (T +1)W 2
ξ

2

,

where we have used Assumptions 5 and 6. Hence, applying Gronwall’s Inequality (see
Higham et al. 2003; Dai 2014b) gives rise to

E

sup0≤t≤τ

kt ∧ τ
∗
W


− k̃

t ∧ τ

∗
W

2≤ 8T (T +1)W 2 exp [8(T +1)φ0]ξ
2.

Inserting this into (E3) leads us to

E

sup0≤t≤T

k(t)− k̃(t)
2≤ 8T (T +1)W 2 exp [8(T +1)φ0]ξ

2+
2p+1RW

p
+

2(p−2)W

pR
2

p−2 W p
.

Hence, for ∀ε > 0, we can choose R and W such that

2p+1RW
p

≤ ε

3
and

2(p−2)W

pR
2

p−2 W p
≤ ε

3
.

And for any given T > 0, we put ξ such that

8T (T +1)W 2 exp [8(T +1)φ0]ξ
2 ≤ ε

3
.

In consequence, for ∀ε > 0, we obtain

E

sup0≤t≤T

k(t)− k̃(t)
2≤ ε

3
+

ε

3
+

ε

3
= ε.

Notice the arbitrariness of ε , we can employ Levi Lemma to produce the desired result.
This proof is accordingly complete. �
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